Experimental Study of the Performance of a Horizontal Axis Wind Turbine with A Flat Taper Type of 4:5 and an Outer Angle of 25° With Variations in The Number of Blades

Authors

  • Faranita Putri Anandia Politeknik Negeri Semarang
  • Sahid Sahid Department of Mechanical Engineering, Politeknik Negeri Semarang, Semarang 50275, Indonesia
  • Anis Roihatin Department of Mechanical Engineering, Politeknik Negeri Semarang, Semarang 50275, Indonesia

DOI:

https://doi.org/10.32497/eksergi.v21i03.7110

Keywords:

horizontal axis wind turbine, 25° outlet angle, taper 4:5, number of blades, system efficiency

Abstract

This experimental study investigates the performance of a Horizontal Axis Wind Turbine (HAWT) with a flat taper 4:5 blade design and a 25° exit angle, focusing on the effect of varying the number of blades (6, 9, and 12). The turbine, with a diameter of 1.1 m and blade dimensions of 470 mm length, 110 mm top width, and 137 mm bottom width, was tested at wind speeds of 3 m/s, 5 m/s, 7 m/s, and 9 m/s in a laboratory setting. Parameters such as wind speed, turbine rotation, voltage, and current were measured to analyze system efficiency. The results indicate that blade count and wind speed significantly influence efficiency. The highest efficiency of 12.51% was achieved at 3 m/s with 9 blades, while at 5 m/s, the efficiency peaked at 3.95% with 9 blades. For higher wind speeds (7 m/s and 9 m/s), the optimal efficiency decreased to 2.03% and 0.95%, respectively, both achieved with 6 blades. The study concludes that this turbine design is most effective at low wind speeds (≤5 m/s), making it suitable for regions with similar wind conditions, such as Indonesia. The findings contribute to optimizing blade configurations for small-scale wind energy applications.

References

[1] ESDM, K. (2024). Hingga 2030, Pemerintah Bidik Tambahan Kapasitas Terpasang PLTB 5 GW. Kepala Biro Komunikasi, Layanan Informasi Publik, Dan Kerja Sama. https://www.esdm.go.id/id/media-center/arsip-berita/hingga-2030-pemerintah-bidik-tambahan-kapasitas-terpasang-pltb-5-gw.

[2] Fachri, M. R., & Hendrayana, H. (2017). Analisa Potensi Energi Angin dengan Distribusi Weibull Untuk Pembangkit Listrik Tenaga Bayu (PLTB) Banda Aceh. CIRCUIT: Jurnal Ilmiah Pendidikan Teknik Elektro, 1(1), 1–8. https://doi.org/10.22373/crc.v1i1.1377

[3] Sahid, Mulyono, Totok Prasetyo, Dwiana, Y. dan M. F. (2022). Turbin Angin Poros Horizontal Tipe Flat Sudu Banyak Taper 4:5 dan Sudut Keluaran 25°. In Jurnal Rekayasa Mesin (Vol. 17, Issue 1, p. 169). https://doi.org/10.32497/jrm.v17i1.3086

[4] Aryanto, F., Mara, I. M., & Nuarsa, M. (2013). Terhadap Unjuk Kerja Turbin Angin Poros Horizontal. Dinamika Teknik Mesin, 3(1), 50–59

[5] Herlambang, Y. D., & Wahyono, W. (2019). Rancang Bangun Turbin Angin Poros Horizontal 9 Sudu Flat Dengan Variasi Rasio Lebar Sudu Top Dan Bottom Untuk Meningkatkan Kinerja PLTB. Eksergi, 15(2), 70. https://doi.org/10.32497/eksergi.v15i2.1508.

[6] Sahid, Dwiana, Yanuar, A. (2020). Turbin Angin Poros Horizontal Tipe Flat Sudu Banyak Dengan Perlakuan Sudut Luaran. Prosiding Seminar Nasional NCIET, 1(1), 326–335. https://doi.org/10.32497/nciet.v1i1.126

[7] Sahid, Mulyono, Totok Prasetyo, Dwiana, Y. dan M. F. (2022). Turbin Angin Poros Horizontal Tipe Flat Sudu Banyak Taper 4:5 dan Sudut Keluaran 25°. In Jurnal Rekayasa Mesin (Vol. 17, Issue 1, p. 169). https://doi.org/10.32497/jrm.v17i1.3086

[8] Suwoto, G., Teknik, J., Politeknik, M., & Semarang, N. (2018). Karakterisasi Turbin Angin Sudu Flat. 3(1), 1–11.

[9] Bourhis, M., Pereira, M., & Ravelet, F. (2022). Experimental investigation of the effect of blade solidity on micro-scale and low tip-speed ratio wind turbines. Experimental Thermal and Fluid Science, 140. https://doi.org/10.1016/j.expthermflusci.2022.110745.

[10] Adi Sayoga, I. M., Wiratama, I. K., Mara, M., & Catur, A. D. (2014). PENGARUH VARIASI JUMLAH BLADE TERHADAP AERODINAMIK PERFORMAN PADA RANCANGAN KINCIR ANGIN 300 Watt. Dinamika Teknik Mesin, 4(2), 103–109. https://doi.org/10.29303/d.v4i2.59

[11] Dicky, J. (2020). Pengujian Kinerja Turbin Angin Darrieus – Savonius Dengan Kapasitas Maksimum 300 Watt. Fakultas Teknik, 21–23.

[12] Dony Damara. (2016). Analysis Rotor Horizontal Axis Wind Turbine (Hawt) With Variation Geometry And Number Of Blade For Capacity 10 Kw

[13] E. Hasan, M., Eltayesh, A., I. Awaad, M., & M. El-Batsh, H. (2023). Experimental Examination for the Electric Power Generation of a Commercial Small-scale Wind Turbine with Modified Aerodynamic Design. Alexandria Engineering Journal, 64, 25–39. https://doi.org/10.1016/j.aej.2022.08.040

[14] Siregar, I. H., Effendy, M., & Rasyid, A. H. A. (2023). Pengaruh Jumlah Bilah Pengarah Angin Jenis Omnidirectional Terhadap Kinerja Model Turbin Angin Savonius. Otopro, 18(2), 65–70. https://doi.org/10.26740/otopro.v18n2.p65-70

[15] Lovibond, O., & Dvorak, V. (2023). Machine Translated by Google Konversi dan Manajemen Energi : X dinamika fluida komputasional. 17(November), 1–16K. ESDM, “Hingga 2030, Pemerintah Bidik Tambahan Kapasitas Terpasang PLTB 5 GW,” 2024. https://ebtke.esdm.go.id/artikel/siaran-pers/hingga-2030,-pemerintah-bidik-tambahan-kapasitas-terpasang-pltb-5-gw

Downloads

Published

2025-09-25