UJI EKSPERIMENTAL PENGARUH SUDUT OMNI DIRECTIONAL GUIDE VANES TERHADAP PERFORMA TURBIN HIDROKINETIK DARRIEUS

Emilia Putri Octauria, Dwi Anung Nindito, Raden Haryo Saputra

Abstract


Energi terbarukan bisa digunakan sebagai solusi mengurangi ketergantungan pada bahan bakar fosil dengan cara menggunakan sumber hidroelektrik seperti penggunaan turbin vertikal berjenis Darrieus. Turbin Darrieus memiliki kelemahan yaitu kesulitan memulai awal putaran (self starting) pada rotornya karena berbasis gaya angkat. Studi ini menyelidiki pengaruh penambahan pengarah Omni Directional Guide Vanes (ODGV) dengan jumlah guide vanes dan besar sudut berbeda-beda terhadap turbin Darrieus dengan tujuan dapat menekan kelemahannya. Studi ini menggunakan turbin Darrieus 2 (dua) airfoil dan 3 (tiga) airfoil dengan profil NACA 0012 untuk diujikan di aliran air pada saluran prismatik. Hasil uji eksperimental menunjukkan bahwa penggunaan pengarah dengan perbandingan 1/6 celah ODGV (6 guide vanes) dan sudut 0º mengakibatkan bertambahnya nilai Coefficient of Power  (Cp) dan nilai Tip Speed Ratio (TSR), sehingga mampu meningkatkan Cp rata-rata lebih besar 34,25% dari turbin Darrieus konvensional. Namun seiring bertambahnya jumlah guide vanes dan besar sudut membuat performa turbin menurun. Pengarah ODGV mampu meningkatkan nilai TSR sehingga dapat mengoptimalkan gaya angkat pada turbin.


Keywords


experimental test; guide vanes angle; hydrokinetic darrieus turbine; Coefficient of Power; Tip Speed Ratio

Full Text:

PDF

References


Alexander, A. S., & Santhanakrishnan, A. (2018). Trapped Cylindrical Flow with Multiple Inlets for Savonius Vertical Axis Wind Turbines. Journal of Fluids Engineering, Transactions of the ASME, 140(4), 1–26.

Alom, N., & Saha, U. K. (2018). Four Decades of Research into the Augmentation Techniques of Savonius Wind Turbine Rotor. Journal of Energy Resources Technology, Transactions of the ASME, 140(5).Antomo, T., Kamiana, I. M., & Nindito, D. A. (2020). Analisis pengembangan hidrokinetik turbin gorlov akibat penambahan luas bidang tangkap. Teknika: Jurnal Sains Dan Teknologi, 16(2), 159. https://doi.org/10.36055/tjst.v16i2.9186

Bedon, G., De Betta, S., & Benini, E. (2015). A computational assessment of the aerodynamic performance of a tilted Darrieus wind turbine. Journal of Wind Engineering and Industrial Aerodynamics, 145, 263–269.

Bedon, G., Raciti Castelli, M., & Benini, E. (2013). Optimization of a Darrieus vertical-axis wind turbine using blade element - momentum theory and evolutionary algorithm. Renewable Energy, 59, 184–192.

Bedon, G., Raciti Castelli, M., & Benini, E. (2014). Optimal spanwise chord and thickness distribution for a Troposkien Darrieus wind turbine. Journal of Wind Engineering and Industrial Aerodynamics, 125, 13–21.

Erinofiardi, Gokhale, P., Date, A., Akbarzadeh, A., Bismantolo, P., Suryono, A. F., Mainil, A. K., & Nuramal, A. (2017). A Review on Micro Hydropower in Indonesia. Energy Procedia, 110(March), 316–321.

Febrianto, Aris, & Agoes Santoso. (2016). Analisa Perbandingan Torsi dan RPM Turbin Tipe Darrieus Terhadap Efisiensi Turbin. Jurnal Teknik ITS, 5(2).

Hantoro, R., Utama, I. K. A. P., Arief, I. S., Ismail, A., & Manggala, S. W. (2018). Innovation in Vertical Axis Hydrokinetic Turbine - Straight Blade Cascaded (VAHT-SBC) design and testing for low current speed power generation. Journal of Physics: Conference Series, 1022(1).

Lim, Y. C., Chong, W. T., & Hsiao, F. B. (2013). Performance investigation and optimization of a vertical axis wind turbine with the omni-direction-guide-vane. Procedia Engineering, 67, 59–69.

Malipeddi, A. R., & Chatterjee, D. (2012). Influence of duct geometry on the performance of Darrieus hydroturbine. Renewable Energy, 43, 292–300.

Mohamed, M. H. (2012). Performance investigation of H-rotor Darrieus turbine with new airfoil shapes. Energy, 47(1), 522–530.

Nindito, D. A., Istiarto, & Kironoto, B. A. (2008). Simulasi Numeris Tiga Dimensi Kantong Lumpur Bendung Sapon. Forum Teknik Sipil, XVIII(1), 712–724.

Paraschivoiu, I., Delclaux, F., Fraunie, P., & Beguier, C. (1983). Aerodynamic Analysis of the Darrieus Rotor Including Secondary Effects. Journal of Energy, 7(5), 416–422.

Patel, V., Eldho, T. I., & Prabhu, S. V. (2017). Experimental investigations on Darrieus straight blade turbine for tidal current application and parametric optimization for hydro farm arrangement. In International Journal of Marine Energy (Vol. 17). Elsevier Ltd.

Sahim, K., Ihtisan, K., Santoso, D., & Sipahutar, R. (2014). Experimental study of darrieus-savonius water turbine with deflector: Effect of deflector on the performance. International Journal of Rotating Machinery, 2014.

Saini, G., & Saini, R. P. (2019). A review on technology, configurations, and performance of cross-flow hydrokinetic turbines. International Journal of Energy Research, 43(13), 1–41.

Saini, G., Kumar, A., & Saini, R. P. (2020). Assessment of hydrokinetic energy – A case study of eastern Yamuna canal. Materials Today: Proceedings, 2–6.

Scungio, M., Arpino, F., Focanti, V., Profili, M., & Rotondi, M. (2016). Wind tunnel testing of scaled models of a newly developed Darrieus-style vertical axis wind turbine with auxiliary straight blades. Energy Conversion and Management, 130, p.60–70.

Sheldahl, R. E., Klimas, P. C., & Feltz, L. V. (1980). Aerodynamic Performance of a 5-m-Diameter Darrieus Turbine. Journal of Energy, 4(5), 227–232.

Shimizu, S., Fujii, M., Sumida, T., Sasa, K., Kimura, Y., Koga, E., & Motogi, H. (2016). Starting system for darrieus water turbine of tidal stream electricity generation. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, 6, 3–8.

Shimokawa, K., Furukawa, A., Okuma, K., Matsushita, D., & Watanabe, S. (2010). Side-wall effect of runner casing on performance of Darrieus-type hydro turbine with inlet nozzle for extra-low head utilization. Science China Technological Sciences, 53(1), 93–99.

Shimokawa, K., Furukawa, A., Okuma, K., Matsushita, D., & Watanabe, S. (2012). Experimental study on simplification of Darrieus-type hydro turbine with inlet nozzle for extra-low head hydropower utilization. Renewable Energy, 41, 376–382.

Shiono, M., Suzuki, K., & Kiho, S. (2000). Experimental study of the characteristics of a Darrieus turbine for tidal power generation. Electrical Engineering in Japan (English Translation of Denki Gakkai Ronbunshi), 132(3), 38–47.

Tchakoua, P., Wamkeue, R., Ouhrouche, M., Tameghe, T. A., & Ekemb, G. (2015). A new approach for modeling darrieus-type vertical axis wind turbine rotors using electrical equivalent circuit analogy: Basis of theoretical formulations and model development. Energies, 8(10), 10684–10717.

Tjiu, W., Marnoto, T., Mat, S., Ruslan, M. H., & Sopian, K. (2015). Darrieus vertical axis wind turbine for power generation I: Assessment of Darrieus VAWT configurations. Renewable Energy, 75, 50–67.

Torresi, M., Bari, P., David, V. R., Fortunato, B., Bari, P., David, V. R., Camporeale, S. M., Bari, P., & David, V. R. (2013). An Efficient 3D CFD Model For The Analysis Of The Flow Field Around Darrieus Rotors. Proceedings of ASME Turbo Expo 2013: Turbine Technical Conference and Exposition GT2013, 1, 1–14.

Wardani, C. S., Nindito, D. A., & Jaya, A. R. (2020). Inovasi Dan Desain Turbin Hidrokinetik Darrieus Berdasarkan Bentuk Distribusi Kecepatan Aliran. Media Ilmiah Teknik Sipil, 9(1), 32–43. https://doi.org/10.33084/mits.v9i1.1771




DOI: http://dx.doi.org/10.32497/eksergi.v17i2.2581

Refbacks

  • There are currently no refbacks.


Jurusan Teknik Mesin, Politeknik Negeri Semarang
Jl. Prof. Sudarto, SH., Tembalang, Semarang
Telpon (024) 7478384; Fax: (024) 7472396;

Email: jurnal.eksergi@polines.ac.id

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

View Statistics View MyStat