IMPLEMENTASI MACHINE LEARNING UNTUK SISTEM IRIGASI CERDAS
DOI:
https://doi.org/10.32497/orbith.v21i2.7038Keywords:
irrigation, machine learning, random forestAbstract
Abstrak
Penggunaan air yang tidak efisien dalam pertanian seringkali menjadi salah satu penyebab utama menurunnya produktivitas lahan. Di era pertanian modern, implementasi Machine Learning (ML) dapat menjadi solusi untuk memantau kondisi tanah dan menentukan kebutuhan irigasi secara otomatis. Penelitian ini mengembangkan sistem berbasis sensor tanah dengan parameter kelembaban, suhu, cahaya, dan curah hujan yang diproses menggunakan algoritma Random Forest. Data dikembangkan melalui simulasi sebanyak 10.000 sampel tanpa penambahan noise untuk menjaga representasi kondisi nyata. Model Random Forest dibandingkan dengan Decision Tree, SVM, dan Neural Network. Hasil pengujian menunjukkan bahwa Random Forest memberikan performa terbaik dengan akurasi di atas 96,4%. Selain itu dilakukan juga perbandingan penggunaan antara baseline data dengan jumlah data tiap kelas yang berbeda jauh dengan metode penyeimbang data Synthetic Minority Oversampling Technique (SMOTE). Hasil pengujian menunjukkan meskipun penggunaan metode SMOTE menurunkan akurasi secara umum, tetapi dapat meningkatkan Recall yang menunjukkan bahwa model lebih sensitif pada data minoritas.
Kata kunci: irigasi, machine learning, random forest
Abstract
Inefficient water use in agriculture is often a major cause of declining land productivity. In the modern agricultural era, the implementation of Machine Learning (ML) can be a solution for monitoring soil conditions and automatically determining irrigation needs. This study developed a soil sensor-based system with parameters of humidity, temperature, light, and rainfall processed using the Random Forest algorithm. Data was developed through simulations of 10,000 samples without the addition of noise to maintain the representation of real conditions. The Random Forest model was compared with Decision Tree, SVM, and Neural Network. The test results showed that Random Forest provided the best performance with an accuracy above 96.4%. Furthermore, a comparison was conducted between the use of baseline data with a significantly different number of data per class using the Synthetic Minority Oversampling Technique (SMOTE) data balancing method. The test results showed that although the use of the SMOTE method decreased accuracy in general, it could increase Recall, making the model more sensitive to minority data.
Keywords: irigation, machine learning, random forest
References
M. Camporese, S. J. Gumière, M. Putti, and G. Botter, “Efficient Irrigation of Maize Through Soil Moisture Monitoring and Modeling,” Frontiers in Water, vol. 3, Mar. 2021, doi: 10.3389/frwa.2021.627551.
M. L. Page, L. Jarlan, M. E. Hajj, M. Zribi, N. Baghdadi, and A. Boone, “Potential for the Detection of Irrigation Events on Maize Plots Using Sentinel-1 Soil Moisture Products,” Remote Sensing, vol. 12, no. 10, p. 1621, May 2020, doi: 10.3390/rs12101621.
S. Taghvaeian et al., “Irrigation Scheduling for Agriculture in the United States: The Progress Made and the Path Forward,” Transactions of the ASABE, vol. 63, no. 5, p. 1603, Jan. 2020, doi: 10.13031/trans.14110.
M. B. Budianto, A. Supriadi, S. Hidayat, and S. Salehudin, “Model Irigasi Hemat Air Perpaduan System of Rice Intensification (SRI) dengan Alternate Wetting and Drying (AWD) pada Padi Sawah,” Jurnal Teknik Pengairan, vol. 11, no. 2, p. 128, Nov. 2020, doi: 10.21776/ub.pengairan.2020.011.02.06.
M. F. Saputra and R. R. Suryono, “Implementasi Teknologi Irigasi Tetes pada Tanaman Jagung Menggunakan Sensor Soil Moisture dan Mikrokontroler Esp 32,” MALCOM Indonesian Journal of Machine Learning and Computer Science, vol. 5, no. 1, p. 111, Dec. 2024, doi: 10.57152/malcom.v5i1.1642.
N. C. Găitan, B. I. Batinas, C. Ursu, and F. N. Crainiciuc, “Integrating Artificial Intelligence into an Automated Irrigation System,” Sensors, vol. 25, no. 4, p. 1199, Feb. 2025, doi: 10.3390/s25041199.
A. A. Abdelmoneim, H. N. Kimaita, C. M. A. Kalaany, B. Derardja, G. Dragonetti, and R. Khadra, “IoT Sensing for Advanced Irrigation Management: A Systematic Review of Trends, Challenges, and Future Prospects,” Sensors, vol. 25, no. 7. Multidisciplinary Digital Publishing Institute, p. 2291, Apr. 04, 2025. doi: 10.3390/s25072291.
Md. A. K. Akhtar et al., “Smart Irrigation for Sustainable Farming: Low- Cost IoT Solution,” Research Square (Research Square), Aug. 2024, doi: 10.21203/rs.3.rs-4720649/v1.
E. Avşar and Md. N. Mowla, “Wireless communication protocols in smart agriculture: A review on applications, challenges and future trends,” Ad Hoc Networks, vol. 136. Elsevier BV, p. 102982, Aug. 27, 2022. doi: 10.1016/j.adhoc.2022.102982.
D. Weraikat, K. Šorić, M. Žagar, and M. Sokač, “Data Analytics in Agriculture: Enhancing Decision-Making for Crop Yield Optimization and Sustainable Practices,” Sustainability, vol. 16, no. 17, p. 7331, Aug. 2024, doi: 10.3390/su16177331.
T. Miller et al., “Integrating Artificial Intelligence Agents with the Internet of Things for Enhanced Environmental Monitoring: Applications in Water Quality and Climate Data,” Electronics, vol. 14, no. 4, p. 696, Feb. 2025, doi: 10.3390/electronics14040696.
G. Santoso, S. Hani, and R. Prasetiyo, “Sistem Monitoring Kualitas Tanah Tanaman Padi dengan Parameter Suhu dan Kelembaban Tanah Berbasis Internet of Things (IoT),” Prosiding Seminar Nasional Teknoka, vol. 5, p. 146, Dec. 2020, doi: 10.22236/teknoka.v5i.297.
A. SURYANINGRAT, D. Kurnianto, and R. A. Rochmanto, “Sistem Monitoring Kelembaban Tanaman Cabai Rawit menggunakan Irigasi Tetes Gravitasi berbasis Internet Of Things (IoT),” ELKOMIKA Jurnal Teknik Energi Elektrik Teknik Telekomunikasi & Teknik Elektronika, vol. 10, no. 3, p. 568, Jul. 2022, doi: 10.26760/elkomika.v10i3.568.
N. Hassan, S. H. Cheragee, S. Ahammed, and A. Z. Md. T. Islam, “Sensor based Smart Irrigation System with Monitoring and Controlling using Internet of Things,” The International Journal of Ambient Systems and Applications, vol. 9, no. 2, p. 17, Jun. 2021, doi: 10.5121/ijasa.2021.9203.
R. Matenge., “SOIL MOISTURE BASED IRRIGATION TEST IN A REMOTELY MONITORED AUTOMATED SYSTEM.,” International Journal of Advanced Research, vol. 5, no. 12, p. 15, Dec. 2017, doi: 10.21474/ijar01/5932.
G. S. P. Lakshmi, P. N. Asha, G. Sandhya, S. Sharma, S. Shilpashree, and S. G. Subramanya, “An intelligent IOT sensor coupled precision irrigation model for agriculture,” Measurement Sensors, vol. 25, p. 100608, Dec. 2022, doi: 10.1016/j.measen.2022.1006
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
						
							

