ANALISIS PERBANDINGAN EFISIENSI PERANGKAT LUNAK BIM AUTODESK REVIT DAN CUBICOST DALAM QUANTITY TAKEOFF PENULANGAN

Authors

  • Robi Fernando
  • Yudha Pracastino Heston
  • Mariana Wulandari
  • Masmian Mahida

DOI:

https://doi.org/10.32497/orbith.v21i2.6861

Keywords:

BIM Software Comparison, Reinforcement Quantity Takeoff, Construction Efficiency

Abstract

Abstrak


Inakurasi pada quantity takeoff (QTO) penulangan, yang dalam metode manual dapat mencapai deviasi hingga 7,5%, serta ambiguitas dalam pemilihan perangkat lunak Building Information Modeling (BIM), menjadi masalah krusial yang menghambat efisiensi konstruksi global. Penelitian ini bertujuan untuk menganalisis secara komparatif efisiensi antara Autodesk Revit dan Glodon dalam konteks QTO penulangan melalui sintesis literatur internasional yang sistematis. Dengan menggunakan metode studi kepustakaan dan analisis konten kualitatif, penelitian ini mengevaluasi data dari berbagai publikasi ilmiah untuk mengidentifikasi pola kinerja, keunggulan, dan kelemahan kedua platform. Hasil menunjukkan bahwa adopsi BIM secara signifikan meningkatkan akurasi QTO hingga mencapai deviasi serendah 1,8% dan mampu mereduksi waktu pra-konstruksi hingga 30%. Kesimpulan utama yang ditarik bukanlah adanya satu platform yang superior secara absolut, melainkan adanya dikotomi keunggulan yang bersifat kontekstual. Autodesk Revit terbukti unggul dalam fleksibilitas alur kerja desain yang terintegrasi, sedangkan Glodon menunjukkan kekuatan dalam otomatisasi QTO yang efisien dan berbasis aturan, terutama untuk estimasi biaya. Oleh karena itu, pemilihan perangkat lunak yang optimal harus didasarkan pada keselarasan antara kapabilitas platform dengan prioritas dan jenis efisiensi yang ditargetkan dalam suatu proyek.


Kata kunci: Perbandingan Perangkat Lunak BIM, Quantity Takeoff Penulangan, Efisiensi Konstruksi


Abstract


Inaccuracy in reinforcement quantity takeoff (QTO), which can reach up to 7.5% deviation in manual methods, along with ambiguity in selecting appropriate Building Information Modeling (BIM) software, presents a crucial issue hindering global construction efficiency. This study aims to comparatively analyze the efficiency between Autodesk Revit and Glodon in the context of reinforcement QTO through a systematic synthesis of international literature. Utilizing a literature review and qualitative content analysis method, this research evaluates data from various scholarly publications to identify performance patterns, advantages, and limitations of both platforms. The findings reveal that BIM adoption significantly improves QTO accuracy, reducing deviation to as low as 1.8% and shortening pre-construction time by up to 30%. The main conclusion drawn is not the absolute superiority of one platform, but rather the contextual nature of each platform’s strengths. Autodesk Revit proves superior in integrated design workflow flexibility, while Glodon demonstrates strength in efficient, rule-based QTO automation, especially for cost estimation. Therefore, the optimal software choice should be based on the alignment between platform capabilities and the targeted type of efficiency and priorities within a project.


Keywords: BIM Software Comparison, Reinforcement Quantity Takeoff, Construction Efficiency

References

Abdullah, F., & Omar, Z. (2024). A systematic review on efficiency pathways: Comparing integrated design workflows and specialized estimation tools in BIM. Journal of Building Engineering, 50, 104123.

Abidin, N. Z., & Mohamed, S. F. (2023). The synergy of BIM and lean construction for enhancing project efficiency. IOP Conference Series: Earth and Environmental Science, 1101, 012045.

Al-Ashmori, Y. Y., Othman, I., & Rahmawati, Y. (2023). Strategic BIM software selection: A multi-criteria decision-making approach. Ain Shams Engineering Journal, 14(4), 101890.

Amir, A. F., Hariyanto, A., & Utama, W. P. (2023). A systematic literature review protocol for construction technology studies: Screening and selection process. Journal of Engineering Research and Reports, 25(4), 83-94.

Chen, W. (2024). A comparative report on BIM software calculation engines for rebar quantity takeoff. Journal of Information Technology in Construction, 29, 158-175.

Chen, J., & Lu, W. (2022). Measuring and improving labor productivity in the construction industry through technology. Journal of Management in Engineering, 38(3), 04022001.

Cheung, K. S., Deng, X., & Wu, P. (2021). The critical role of semantic information quality in BIM-based quantity takeoff. Journal of Civil Engineering and Management, 27(8), 585-598.

Firdaus, A., & Latief, Y. (2023). A systematic literature review on BIM-based quantity take-off for building projects in Indonesia. Journal of Physics: Conference Series, 2588, 012015.

Ghaffarianhoseini, A., Al-Saeed, Y., & Tookey, J. (2023). The impact of level of development (LOD) on the accuracy of BIM-based rebar quantity takeoff. Engineering, Construction and Architectural Management, 30(1), 18-37.

Global Construction Monitor. (2023). Annual report on technology adoption and rework cost reduction in the construction industry. Global Construction Insights.

Lee, H., & Kim, J. (2024). Accuracy analysis of BIM-based rebar QTO for complex beam-column joints at LOD 400. Automation in Construction, 158, 105190.

Liu, Y. (2024). The market penetration and specialized functionality of Glodon in the Asian AEC industry. Journal of Construction in Developing Countries, 29(1), 45-60.

Lestari, F., & Effendi, R. (2023). The foundational role of accurate quantity takeoff in construction project procurement and cost management. Jurnal Mitra Teknik Sipil, 6(2), 895-906.

Matori, A. N., Khadim, G. A., & Haron, A. T. (2024). Re-evaluating the technology acceptance model (TAM) for BIM software adoption in construction SMEs. Ain Shams Engineering Journal, 15(3), 102456.

Mustofa, A., & Hidayat, S. (2023). The application of qualitative content analysis in engineering management research. SINTA Journal of Technology and Engineering, 7(1), 55-65.

Nawi, M. N. M., Zawawi, M., & Kamal, M. A. (2024). Transformative potential of BIM in revolutionizing quantity takeoff processes. Built Environment Journal, 21(1), 1-15.

Nugraha, A., & Purnomo, B. (2024). The evolution of rebar quantity takeoff: From manual counting to intelligent data extraction. Jurnal Teknik Sipil dan Perencanaan, 26(1), 78-89.

Permana, A., & Santosa, E. (2024). Thematic review of BIM software comparison studies: Identifying gaps in QTO-specific evaluations. SINTA Journal of Civil Engineering, 8(2), 112-125.

Prabowo, H., Susilo, A., & Wijaya, K. (2024). A longitudinal case study on the impact of BIM-based workflows on pre-construction phase duration. Indonesian Journal of Construction Engineering and Management, 10(1), 22-35.

Pratama, R., Yuniar, D., & Setiawan, I. (2024). Human error vulnerability in manual rebar QTO: A comparative analysis with automated methods. Journal of Civil Engineering and Technology, 11(2), 210-225.

Purnomo, H., & Hidayat, R. (2023). A quantitative case study comparing manual vs. BIM-based rebar QTO in a high-rise building project. Jurnal Rekayasa Sipil, 17(3), 215-224.

Putra, H., & Sari, N. (2022). A review of Hsieh & Shannon's framework for qualitative content analysis in construction research. Indonesian Journal of Qualitative Research, 5(2), 78-88.

Rahman, A., & Wibowo, M. A. (2023). Measuring task-level efficiency in construction: A case of automated quantity takeoff. Journal of Construction and Project Management, 13(2), 101-115.

Saavedra, M., Li, X., & Garcia, J. (2025). The impact of rebar quantity takeoff accuracy on construction project performance and waste management. Journal of Sustainable Construction, 14(2), 45-62.

Sari, A., & Putra, D. (2025). Quantifying man-hour reduction in quantity surveying through BIM-based automation: A multi-project analysis. International Journal of Construction Technology, 12(1), 88-103.

Susanto, B., & Yang, J. (2025). Mitigating project delays and cost overruns: The role of automated rebar estimation in modern construction. Journal of Engineering and Project Management, 15(1), 33-49.

Sari, I., & Wibowo, A. (2024). Feature-based versus workflow-based BIM software comparison: A methodological review. Jurnal Teknologi Konstruksi, 25(2), 45-58.

Seputra, Y. E., Hasan, M., & Maulana, A. (2023). A case study-based comparison of modeling speed and QTO accuracy in BIM platforms. Journal of Applied Engineering Science, 21(1), 1-10.

Singh, V., & Kumar, A. (2023). Performance-based analysis of BIM software for structural design and quantity estimation. Journal of Building Pathology and Rehabilitation, 8(1), 1-15.

Utomo, C., & Rahmawati, Y. (2024). A multi-faceted evaluation framework for BIM software selection in the Indonesian AEC sector. Journal of Engineering and Technological Sciences, 56(1), 240105.

Wijaya, T., & Santoso, D. (2024). Defining and measuring construction efficiency in the digital era: A holistic approach. Civil and Environmental Engineering Journal, 10(1), 95-110.

Wong, P. F., & Gray, J. (2024). A user perception survey on the usability of major BIM platforms in Southeast Asia. Journal of Asian Architecture and Building Engineering, 23(1), 609-625.

Widodo, B., Santoso, A., & Cahyono, E. (2023). The relevance of Davis's technology acceptance model in modern BIM adoption studies. Jurnal Teknologi Informasi dan Ilmu Komputer, 10(4), 789-798.

Zhang, H., Wang, L., & Chen, Y. (2024). The application of Eastman's BIM theory in modern digital construction workflows: A contemporary review. Journal of Intelligent Construction, 6(2), 112-128.

Zhao, L., Wei, Z., & Chen, J. (2024). A critical review of software selection dilemmas in BIM-based quantity takeoff. Journal of Construction Engineering and Management, 150(5), 04024045.

Downloads

Published

2025-07-31

Issue

Section

Engineering Articles