EVALUASI KINERJA MULTI ANTENA MIKROSTRIP 2,4 GHZ DIRECTIONAL UNTUK APLIKASI KOMUNIKASI NIRKABEL

Irfan Mujahidin

Abstract


Dalam beberapa tahun terakhir, komunikasi nirkabel telah menggunakan antena patch mikrostrip sebagai komponen umum dalam sistemnya. Makalah ini menyajikan rancangan susunan patch mikrostrip paralel di insert untuk beroperasi pada frekuensi narrowband untuk komunikasi nirkabel. Multi Antena Mikrostrip 2,4 GHz Directional Sangat penting dievaluasi dalam konteks ini karena secara signifikan multi antenna memberikan dampak signifikan pada sistem komunikasi yang memanfaatkan multi input dan multi output. Penguatan yang tinggi diperoleh dengan menggunakan patch persegi yang mudah di duplikasi dan diimplementasikan. Hal ini menunjukkan bahwa antena yang di evaluasi kinerja paramternya sangat penting. Beberapa parameter antena seperti pola radiasi dan gain untuk satu dan multi antena diplot dan didapatkan hasil yang baik. Perangkat lunak simulator struktur frekuensi tinggi (HFSS) telah digunakan untuk mendapatkan hasil eksperimen. Sebagai bahan substrat, digunakan FR4 yang mempunyai konstanta dielektrik 4,2.
Kata kunci : Antena, Miikrotrip, Multiantena, Nirkabel.

In recent years, wireless communications have used microstrip patch antennas as a common component in their systems. This paper presents the design of an inserted parallel microstrip patch array to operate at narrowband frequencies for wireless communications. 2.4 GHz Directional Microstrip Multi Antenna It is important to evaluate in this context because multi antennas have a significant impact on communication systems that utilize multiple inputs and multiple outputs. The high gain obtained by using a square patch is easy to duplicate and implement. This shows that the antenna performance parameters evaluated are very important. Several antenna parameters such as radiation pattern and gain for single and multiple antennas were plotted and good results were obtained. High frequency structure simulator software (HFSS) has been used to obtain the experimental results. As a substrate material, FR4 which has a dielectric constant of 4.2 is used.
Keywords: Antenna, Microtrip, Multiantena, Wireless.


Keywords


Antenna; Microtrip; Multiantena; Wireless

Full Text:

PDF

References


Balanis, C. A. (2009). Antenna Theory: Analysis and Design, (3RD ED.). In Wiley India Pvt. Limited.

Balanis, C. A. (2016). Antenna Theory Analysis and Desing. Weley, 4(3).

Endrayana, E., Wahyuni, D. H. S., Nachrowie, N., & Mujahidin, I. (2019). VARIASI Ground Plane Antena Collinear Pada Pemancar Telivisi Analog Dengan Frekuensi Uhf 442 MHz. JASIEK (Jurnal Aplikasi Sains, Informasi, Elektronika Dan Komputer). https://doi.org/10.26905/jasiek.v1i2.35 26

Mahfuz, M. M. H., Islam, M. R., Park, C.W., Elsheikh, E. A. A., Suliman, F. M., Habaebi, M. H., Malek, N. A., & Sakib, N. (2022). Wearable Textile Patch Antenna: Challenges and Future Directions. IEEE Access, 10. https://doi.org/10.1109/ACCESS.2022

.3161564

Mujahidin, I. (2018). Directional 1900 MHz Square Patch Ring Slot Microstrip Antenna For WCDMA. JEEMECS (Journal of Electrical Engineering, Mechatronic and Computer Science). https://doi.org/10.26905/jeemecs.v1i2. 2626

Mujahidin, I., & Arinda, P. S. (2019). Antena Compact Double Square Marge 2, 6GHz Dengan Output Perbedaan Fase 90 Derajat Untuk Aplikasi LTE. JEECAE (Journal of Electrical, Electronics, Control, and Automotive Engineering), 4(2), 273–278.

Mujahidin, I., & Kitagawa, A. (2021a). CP Antenna with 2 × 4 Hybrid Coupler for Wireless Sensing and Hybrid RF Solar Energy Harvesting. Sensors (Switzerland), 21, 1–20. https://doi.org/10.3390/s21227721

Mujahidin, I., & Kitagawa, A. (2021b). The Compact 2.4 GHz Hybrid Electromagnetic Solar Energy Harvesting (HES-EH) circuit using Seven Stage Voltage Doubler and Organic Thin Film Solar Cell. 2021 4th International Seminar on Research of Information Technology and Intelligent Systems, ISRITI 2021.

https://doi.org/10.1109/ISRITI54043.2 021.9702844

Mujahidin, I., & Kitagawa, A. (2023). Ring slot CP antenna for the hybrid electromagnetic solar energy harvesting and IoT application. Telkomnika (Telecommunication Computing Electronics and Control), 21(2), 290–301. https://doi.org/10.12928/TELKOMNI KA.v21i2.24739

Prasetya, D. A., & Mujahidin, I. (2020). 2.4 GHz Double Loop Antenna with Hybrid Branch-Line 90-Degree Coupler for Widespread Wireless Sensor. https://doi.org/10.1109/eeccis49483.20 20.9263477

Sugiarto, S. K., Mujahidin, I., & Setiawan, A. B. (2019). 2, 5 GHz Antena Mikrostrip Polarisasi Circular Model Patch Yin Yang untuk Wireless Sensor. JEECAE (Journal of Electrical, Electronics, Control, and Automotive Engineering), 4(2), 297–300.

Suharjono, A., Mukhlisin, M., Wardihani, E. D., Muhlasah Novitasari, M., Khusna, E. M., Feryando, D. A., Adi, W. T., Pramono, S., Apriantoro, R., & Mujahidin, I. (2023). Performance Evaluation of LoRa 915 MHz for IoT Communication System on Indonesian Railway Tracks with Environmental Factor Propagation Analysis. Proceedings of the 2023 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology, IAICT 2023. https://doi.org/10.1109/IAICT59002.2 023.10205909

Su, Z., Klionovski, K., Liao, H., Chen, Y., Elsherbeni, A. Z., & Shamim, A. (2021). Antenna-on-Package Design: Achieving Near-Isotropic Radiation Pattern and Wide CP Coverage Simultaneously. IEEE Transactions on Antennas and Propagation, 69(7). https://doi.org/10.1109/TAP.2020.304 4134

Suzuki, A., Cothard, N., Lee, A. T., Niemack, M. D., Raum, C., Renzullo, M., Sasse, T., Stevens, J., Truitt, P., Vavagiakis, E., Vivalda, J., Westrook, B., & Yohannes, D. (2020). Commercially Fabricated Antenna- Coupled Transition Edge Sensor Bolometer Detectors for Next- Generation Cosmic Microwave Background Polarimetry Experiment. Journal of Low Temperature Physics. https://doi.org/10.1007/s10909-019- 02325-0

Zhou, L., Martirez, J. M. P., Finzel, J., Zhang, C., Swearer, D. F., Tian, S., Robatjazi, H., Lou, M., Dong, L., Henderson, L., Christopher, P., Carter, E. A., Nordlander, P., & Halas, N. J. (2020). Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts. Nature Energy. https://doi.org/10.1038/s41560-019- 0517-9




DOI: http://dx.doi.org/10.32497/orbith.v19i3.5272

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License. View My Stats