ANALISIS KINERJA SISTEM KOMUNIKASI NIRKABEL NB-IOT UNTUK MONITORING SUNGAI

Roni Apriantoro, Amin Suharjono, Sheila Maharani Putri

Abstract


Mobile Internet of Things (M-IoT) termasuk dalam kategori Internet of Things (IoT) dan merupakan istilah dari GSMA yang mengacu pada teknologi low-power wide area network (LPWAN) standar 3GPP yang menggunakan pita spektrum berlisensi yang lebih rendah, seperti LTE-M, EC-GSM-IoT, dan NB-IoT. NB-IoT memiliki karakteristik cakupan jaringan luas, konsumsi daya rendah, dan kapasitas koneksi yang besar serta mendukung koneksi Long Term Evolution (LTE), sehingga dapat mengirimkan data lebih stabil. Dengan kelebihannya tersebut, jaringan NB-IoT cocok diimplementasikan untuk sistem pemantau parameter bencana banjir akibat luapan air sungai. Pada penelitian ini, performa jaringan NB-IoT diuji dan dievaluasi untuk mengetahui kualitas layanan atau Quality of Service (QoS) dengan parameter uji meliputi end-to-end delay dan packet loss. Lokasi pengujian jaringan NB-IoT dilakukan dibeberapa tempat seperti, Kopma Polines, Kos Wisma Putri, dan di Belakang PKM Polines. Berdasarkan hasil pengujian, packet loss terbaik yaitu 5% saat interval pengiriman 20000 ms di Kos Wisma Putri. Sementara delay terbaik pada penelitian ini yaitu, 178 ms dengan interval pengiriman 5000 ms di Belakang PKM Polines.
Kata Kunci: M-IoT, NB-IoT, QoS, LPWAN, banjir.

Mobile Internet of Things (M-IoT) is included in the Internet of Things (IoT) category and is a term from the GSMA that refers to 3GPP standard low-power wide area network (LPWAN) technology that uses lower licensed spectrum bands, such as LTE- M, EC-GSM-IoT, and NB-IoT. NB-IoT has the characteristics of wide network coverage, low power consumption, and large connection capacity and supports Long Term Evolution (LTE) connections, so it can transmit data more stably. With these advantages, the NB-IoT network is suitable for implementation as a system for monitoring flood disaster parameters due to overflowing river water. In this research, the performance of the NB-IoT network is tested and evaluated to determine the quality of service (QoS) with test parameters including end-to-end delay and packet loss. The NB-IoT network testing locations were carried out in several places such as Kopma Polines, Kos Wisma Putri, and behind PKM Polines. Based on test results, the best packet loss is 5% when the delivery interval is 20,000 ms at Kos Wisma Putri. Meanwhile, the best delay in this research was 178 ms with a delivery interval of 5000 ms behind PKM Polines.
Keywords: M-IoT, NB-IoT, QoS, LPWAN, flood.


Keywords


M-IoT; NB-IoT; QoS; LPWAN; flood

Full Text:

PDF

References


Alnahdi, A. and Liu, S.-H. (2017) ‘Mobile Internet of Things (MIoT) and Its Applications for Smart Environments: A Positional Overview’, in 2017 IEEE International Congress on Internet of Things (ICIOT), pp. 151–154. doi: 10.1109/IEEE.ICIOT.2017.26.

Hamid, H. G. and Alisa, Z. T. (2021) ‘Survey on IoT application layer protocols’, Indonesian Journal of Electrical Engineering and Computer Science, 21(3), pp. 1663–1672. doi: 10.11591/ijeecs.v21.i3.pp1663-1672.

Hendrawati, T. D., Maulana, N. and Al Tahtawi, A. R. (2019) ‘Sistem Pemantauan Kualitas Air Sungai di Kawasan Industri Berbasis WSN dan IoT’, JTERA (Jurnal Teknologi Rekayasa), 4(2), p. 283. doi: 10.31544/jtera.v4.i2.2019.283-292.

Hermawan, R. et al. (2023) ‘Pemanfaatan Sensor Curah Hujan Dan Debit Air Sungai Untuk Monitoring Banjir Berbasis Internet of Things’, Power Elektronik : Jurnal Orang Elektro, 12(1), p. 62. doi: 10.30591/polektro.v12i1.4789.

Mansour, M. et al. (2023) ‘Internet of Things: A Comprehensive Overview on Protocols, Architectures, Technologies, Simulation Tools, and Future Directions’, Energies, 16(8). doi: 10.3390/en16083465.

Mazhar, T. et al. (2023) ‘Quality of Service (QoS) Performance Analysis in a Traffic Engineering Model for Next-Generation Wireless Sensor Networks’, Symmetry, 15(2). doi: 10.3390/sym15020513.

Mwakwata, C. B. et al. (2019) ‘Narrowband Internet of Things (NB-IoT): From Physical (PHY) and Media Access Control (MAC) Layers Perspectives’, Sensors, 19(11). doi: 10.3390/s19112613.

Nourildean, S. W., Hassib, M. D. and Mohammed, Y. A. (2022) ‘Internet of things based wireless sensor network: a review’, Indonesian Journal of Electrical Engineering and Computer Science, 27(1), pp. 246–261. doi: 10.11591/ijeecs.v27.i1.pp246-261.

Rastogi, E. et al. (2020) ‘Narrowband Internet of Things: A Comprehensive Study’, Computer Networks, 173, p. 107209. doi: https://doi.org/10.1016/j.comnet.2020.107209.

Shafique, K. et al. (2020) ‘Internet of Things (IoT) for Next-Generation Smart Systems: A Review of Current Challenges, Future Trends and Prospects for Emerging 5G-IoT Scenarios’, IEEE Access. IEEE, 8, pp. 23022–23040. doi: 10.1109/ACCESS.2020.2970118.

Suharjono, A. et al. (2020) ‘Performance Evaluation of The Sensors Accuration on River Monitoring System Based-on Heterogeneous Wireless Sensor Network’, in AIP Conference Proceedings. AIP Publishing, pp. 0300351– 0300357. doi: 10.1063/5.0000501.

Suharjono, A. et al. (2023) ‘MiSREd: A Low Cost IoT-Enabled Platform Based on Heterogeneous Wireless Network for Flood Monitoring’, International Journal on Advanced Science, Engineering and Information Technology, 13(3), pp. 1137–1146. doi: 10.18517/ijaseit.13.3.18296.

Wulandari, R. (2016) ‘Analysis of QoS (Quality of Service) on the Internet Network (Case Study : UPT Loca Test of Jampang Kulon Mining Engineering - LIPI)’, Jurnal Teknik Informatika dan Sistem Informasi, 2(2), pp. 162–172. doi: 10.28932/jutisi.v2i2.454.

Yousuf, M. A. et al. (2020) ‘Round-Trip Time and Available Bandwidth Estimation Based Congestion Window Reduction Algorithm of MPTCP in Lossy Satellite Networks’, Journal of Physics: Conference Series, 1624(4). doi: 10.1088/1742-6596/1624/4/042024.




DOI: http://dx.doi.org/10.32497/orbith.v19i3.5267

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License. View My Stats