Design and Analysis of Venturi Microbubble Generator Using Computational Fluid Dynamics

Thoharudin Thoharudin, Sunardi Sunardi, Fitroh Anugrah Kusuma Yudha, Muhammad Nadjib, Arif Setyo Nugroho

Abstract


The necessity for dissolved oxygen in water is crucial for the survival and growth of aquatic organisms, particularly tilapia. Seventy-five percent of tilapia will die if there is insufficient dissolved oxygen in the water. This work seeks to develop a venturi bubble-generating technique to combat the scarcity of dissolved oxygen in the water. A floating pump with a capacity of 12 m3/hour was selected as the medium for distributing water and generating vacuum pressure to draw in air for mixing with the water flow in the venturi. Ansys Fluent was used to model piping and venturi systems. The piping system was modeled with a single-phase (water) flow at a steady state, whereas the flow in the venturi was modeled with a multiphase (air and water) flow under transient situations. The simulation findings revealed that the pressure drop at the 90-degree elbow was much greater (27.17 kPa) than that at the 45-degree elbow (16.53 kPa). A 1-inch input diameter venturi produced bubbles with an average diameter of 105 µm, whereas a ½ inch venturi bubble generator produced bubbles with an average diameter of 83 µm. Owing to the numerous advantages of adopting a six-outlet piping system with a ½ inch venturi, this design is recommended for floating pumps with a capacity of 12 m3/h.

Keywords


Aerator; CFD Simulation; Microbubble generator; Venturi

Full Text:

PDF

References


V. A. Prakoso and Y. J. Chang, “Pengaruh Hipoksia terhadap Konsumsi Oksigen pada Benih Ikan Nila (Oreochromis niloticus),” Oseanologi dan Limnol. di Indones., vol. 3, pp. 165–171, 2018, doi: 10.14203/oldi.2018.v3i2.169.

M. Abdel-Tawwab, A. E. Hagras, H. A. M. Elbaghdady, and M. N. Monier, “Effects of dissolved oxygen and fish size on Nile tilapia, Oreochromis niloticus (L.): growth performance, wholebody composition, and innate immunity,” Aquacult Int, vol. 23, pp. 1261–1274, 2015, doi: 10.1007/s10499-015-9882-y.

F. A. Huntingford et al., “Coping strategies in a strongly schooling fish, the common carp Cyprinus carpio,” J. Fish Biol., vol. 76, pp. 1576–1591, 2010, doi: 10.1111/j.1095-8649.2010.02582.x.

I. Prasetyaningsari, A. Setiawan, and A. A. Setiawan, “Design optimization of solar powered aeration system for fish pond in Sleman Regency, Yogyakarta by HOMER software,” Energy Procedia, vol. 32, pp. 90–98, 2013, doi: 10.1016/j.egypro.2013.05.012.

S. Zhou, M. Liu, B. Chen, L. Sun, and H. Lu, “Microbubble- and nanobubble-aeration for upgrading conventional activated sludge process: A review,” Bioresour. Technol., vol. 362, p. 127826, 2022, doi: 10.1016/j.biortech.2022.127826.

E. De Oro Ochoa, M. Carmona García, N. Durango Padilla, and A. Martínez Remolina, “Design and experimental evaluation of a Venturi and Venturi-Vortex microbubble aeration system,” Heliyon, vol. 8, p. e11096, 2022, doi: 10.1016/j.heliyon.2022.e11096.

A. Agarwal, W. J. Ng, and Y. Liu, “Principle and applications of microbubble and nanobubble technology for water treatment,” Chemosphere, vol. 84, no. 9, pp. 1175–1180, Aug. 2011, doi: 10.1016/j.chemosphere.2011.05.054.

M. Liu, T. Li, Z. Wang, T. Radu, H. Jiang, and L. Wang, “Effect of aeration on water quality and sediment humus in rural black-odorous water,” J. Environ. Manage., vol. 320, p. 115867, 2022, doi: 10.1016/j.jenvman.2022.115867.

A. Endo et al., “DO-increasing effects of a microscopic bubble generating system in a fish farm,” Mar. Pollut. Bull., vol. 57, pp. 78–85, 2008, doi: 10.1016/j.marpolbul.2007.10.014.

B. Choi, T.-Y. Jeong, and S. Lee, “Application of jetventurimixer for developing low-energy-demand and highly efficient aeration process of wastewater treatment,” Heliyon, vol. 8, p. e11096, 2022, doi: 10.1016/j.heliyon.2022.e11096.

A. Basso, F. A. Hamad, and P. Ganesan, “Effects of the geometrical configuration of air–water mixer on the size and distribution of microbubbles in aeration systems,” Asia-Pacific J. Chem. Eng., vol. 13, pp. 1–11, 2018, doi: 10.1002/apj.2259.

M. Wu, S. Yuan, H. Song, and X. Li, “Micro-nano bubbles production using a swirling-type venturi bubble generator,” Chem. Eng. Process. - Process Intensif., vol. 170, p. 108697, 2022, doi: 10.1016/j.cep.2021.108697.

C. H. Lee, H. Choi, D.-W. Jerng, D. E. Kim, S. Wongwises, and H. S. Ahn, “Experimental investigation of microbubble generation in the venturi nozzle,” Int. J. Heat Mass Transf., vol. 136, pp. 1127–1138, 2019, doi: 10.1016/j.ijheatmasstransfer.2019.03.040.

K. Sakamatapan, M. Mesgarpour, O. Mahian, H. S. Ahn, and S. Wongwises, “Experimental investigation of the microbubble generation using a venturi-type bubble generator,” Case Stud. Therm. Eng., vol. 27, p. 101238, 2021, doi: 10.1016/j.csite.2021.101238.

J. Huang et al., “A review on bubble generation and transportation in Venturi-type bubble generators,” Exp. Comput. Multiph. Flow, vol. 2, pp. 123–134, 2020, doi: 10.1007/s42757-022-0132-z.

H. Luo and H. F. Svendsen, “Theoretical model for drop and bubble breakup in turbulent dispersions,” AIChE J., vol. 42, pp. 1225–1233, 1996, doi: 10.1002/aic.690420505.

F. Lehr, M. Millies, and D. Mewes, “Bubble-Size distributions and flow fields in bubble columns,” AIChE J., vol. 48, pp. 2426–2442, 2002, doi: 10.1002/aic.690481103.

N. Dutta, P. Kopparthi, A. K. Mukherjee, N. Nirmalkar, and G. Boczkaj, “Novel strategies to enhance hydrodynamic cavitation in a circular venturi using RANS numerical simulations,” Water Res., vol. 204, p. 117559, 2021, doi: 10.1016/j.watres.2021.117559.




DOI: http://dx.doi.org/10.32497/eksergi.v19i2.4305

Refbacks

  • There are currently no refbacks.


Mechanical Engineering Department
Politeknik Negeri Semarang
Jl. Prof. Sudarto, SH., Tembalang, Semarang
Phone (024) 7478384; Fax: (024) 7472396;

Email: jurnal.eksergi@polines.ac.id

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

View Statistics View MyStat