Analisa Parameter Pencetakan Terhadap Sifat Mekanik Polylactic Acid Menggunakan Mesin Cetak 3 Dimensi Fused Deposition Modelling
Abstract
Additive manufacturing dengan metode fused deposition modelling (FDM) banyak diminati dan terus dikembangkan dalam berbagai aplikasi industri. Pada penelitian ini Polylactic Acid (PLA) dicetak menggunakan printer 3D FDM dengan berbagai parameter untuk dijadikan sampel uji tarik. Parameter pencetakan meliputi kepadatan isi, tinggi lapisan, suhu cetak, pola isi, sudut cetak dan orientasi untuk mendapatkan dan menentukan hasil kekuatan tarik terbaik. Pencetakan parameter ini dibahas secara rinci. Hasil percobaan pengaruh variasi pencetakan menunjukkan adanya perbedaan kekuatan tarik PLA.
Keywords
Full Text:
PDFReferences
WANG P, ZOU B, DING S, LI L, HUANG C. Effects of FDM-3D printing parameters on mechanical properties and microstructure of CF/PEEK and GF/PEEK. Chinese J Aeronaut 2021;34:236–46. https://doi.org/10.1016/j.cja.2020.05.040.
Yang TC, Yeh CH. Morphology and mechanical properties of 3D printed wood fiber/polylactic acid composite parts using Fused Deposition Modeling (FDM): The effects of printing speed. Polymers (Basel) 2020;12:1334. https://doi.org/10.3390/POLYM12061334.
Torrado Perez AR, Roberson DA, Wicker RB. Fracture surface analysis of 3D-printed tensile specimens of novel ABS-based materials. J Fail Anal Prev 2014;14:343–53. https://doi.org/10.1007/s11668-014-9803-9.
Saviano M, Bowles BJ, Penny MR, Ishaq A, Muwaffak Z, Falcone G, et al. Development and analysis of a novel loading technique for FDM 3D printed systems: Microwave-assisted impregnation of gastro-retentive PVA capsular devices. Int J Pharm 2022;613:121386. https://doi.org/10.1016/j.ijpharm.2021.121386.
Schieberle P. The Chemistry and Technology of Magnesia. ACS Symp. Ser., vol. 754, 2006, p. 262–75. https://doi.org/10.1021/bk-2000-0754.ch027.
Javaid M, Haleem A. Additive manufacturing applications in medical cases: A literature based review. Alexandria J Med 2018;54:411–22. https://doi.org/10.1016/j.ajme.2017.09.003.
Anggoro paulus W, Winarso R, Ismail R, Jamari J, Bayuseno AP. Application of Fused Deposition Modeling (FDM) on Bone Scaffold Manufacturing Process: A Review. SSRN Electron J 2022;8:e11701. https://doi.org/10.2139/ssrn.4103975.
Najmon JC, Raeisi S, Tovar A. Review of additive manufacturing technologies and applications in the aerospace industry. Elsevier Inc.; 2019. https://doi.org/10.1016/B978-0-12-814062-8.00002-9.
Mohanavel V, Ashraff Ali KS, Ranganathan K, Allen Jeffrey J, Ravikumar MM, Rajkumar S. The roles and applications of additive manufacturing in the aerospace and automobile sector. Mater Today Proc 2021;47:405–9. https://doi.org/10.1016/j.matpr.2021.04.596.
Qi X, Ren Y, Wang X. New advances in the biodegradation of Poly(lactic) acid. Int Biodeterior Biodegrad 2017;117:215–23. https://doi.org/10.1016/j.ibiod.2017.01.010.
Patil P, Singh D, Raykar SJ, Bhamu J. Multi-objective optimization of process parameters of Fused Deposition Modeling (FDM) for printing Polylactic Acid (PLA) polymer components. Mater Today Proc 2021;45:4880–5. https://doi.org/10.1016/j.matpr.2021.01.353.
Raut NP, Kolekar AB. Experimental analysis of 3D printed specimens with different printing parameters for Izod impact strength. Mater Today Proc 2022. https://doi.org/10.1016/j.matpr.2022.11.029.
Abas M, Habib T, Noor S, Salah B, Zimon D. Parametric Investigation and Optimization to Study the Effect of Process Parameters on the Dimensional Deviation of Fused Deposition Modeling of 3D Printed Parts. Polymers (Basel) 2022;14. https://doi.org/10.3390/polym14173667.
Soud W, Baqer I, Ahmed M. Experimental Study of 3D printing Density Effect on the Mechanical Properties of the Carbon-Fiber and Polylactic Acid Specimens. Eng Technol J 2019;37:128–32. https://doi.org/10.30684/etj.37.4a.3.
Domingo-Espin M, Puigoriol-Forcada JM, Garcia-Granada AA, Llumà J, Borros S, Reyes G. Mechanical property characterization and simulation of fused deposition modeling Polycarbonate parts. Mater Des 2015;83:670–7. https://doi.org/10.1016/j.matdes.2015.06.074.
Es-Said OS, Foyos J, Noorani R, Mendelson M, Marloth R, Pregger BA. Effect of layer orientation on mechanical properties of rapid prototyped samples. Mater Manuf Process 2000;15:107–22. https://doi.org/10.1080/10426910008912976.
Yao T, Deng Z, Zhang K, Li S. A method to predict the ultimate tensile strength of 3D printing polylactic acid (PLA) materials with different printing orientations. Compos Part B Eng 2019;163:393–402. https://doi.org/10.1016/j.compositesb.2019.01.025.
Hikmat M, Rostam S, Ahmed YM. Investigation of tensile property-based Taguchi method of PLA parts fabricated by FDM 3D printing technology. Results Eng 2021;11:100264. https://doi.org/10.1016/j.rineng.2021.100264.
Lokesh N, Praveena BA, Sudheer Reddy J, Vasu VK, Vijaykumar S. Evaluation on effect of printing process parameter through Taguchi approach on mechanical properties of 3D printed PLA specimens using FDM at constant printing temperature. Mater Today Proc 2022;52:1288–93. https://doi.org/10.1016/j.matpr.2021.11.054.
Yu Z, Gao Y, Jiang J, Gu H, Lv S, Ni H, et al. Study on Effects of FDM 3D Printing Parameters on Mechanical Properties of Polylactic Acid. IOP Conf Ser Mater Sci Eng 2019;688. https://doi.org/10.1088/1757-899X/688/3/033026.
Hasdiansah H, Sugiyarto S. Pengaruh Setting Parameter pada Slicing Software terhadap Surface Roughness Objek 3D Printing menggunakan Metode Taguchi. J Rekayasa Mesin 2021;16:319. https://doi.org/10.32497/jrm.v16i3.2519.
Sikder P, Challa BT, Gummadi SK. A comprehensive analysis on the processing-structure-property relationships of FDM-based 3-D printed polyetheretherketone (PEEK) structures. Materialia 2022;22:101427. https://doi.org/10.1016/j.mtla.2022.101427.
Geng P, Zhao J, Wu W, Ye W, Wang Y, Wang S, et al. Effects of extrusion speed and printing speed on the 3D printing stability of extruded PEEK filament. J Manuf Process 2019;37:266–73. https://doi.org/10.1016/j.jmapro.2018.11.023.
Bhosale V, Gaikwad P, Dhere S, Sutar C, Raykar SJ. Analysis of process parameters of 3D printing for surface finish, printing time and tensile strength. Mater Today Proc 2022;59:841–6. https://doi.org/10.1016/j.matpr.2022.01.210.
Hasdiansah H, Suzen ZS. Pengaruh Geometri Infill terhadap Kekuatan Tarik Spesimen Uji Tarik ASTM D638 Type IV Menggunakan Filamen PLA+ Sugoi. J Rekayasa Mesin 2021;16:140. https://doi.org/10.32497/jrm.v16i2.2343.
Cahyati S, Marpaung A. Pengaruh Kecepatan Putaran Kipas Pendingin pada Mesin 3D Printing terhadap Kekasaran Permukaan Produk Cetak Sally Cahyati dkk / Jurnal Rekayasa Mesin 2022;17:343–50.
Kumar Mawandiya B, Pancholi K, Shah DB, Joshi SJ. Parametric study on process parameters of FDM 3D printer for thermoplastic materials. Mater Today Proc 2022;59:373–8. https://doi.org/10.1016/j.matpr.2021.10.504.
Naranjo-Lozada J, Ahuett-Garza H, Orta-Castañón P, Verbeeten WMH, Sáiz-González D. Tensile properties and failure behavior of chopped and continuous carbon fiber composites produced by additive manufacturing. Addit Manuf 2019;26:227–41. https://doi.org/10.1016/j.addma.2018.12.020.
Rankouhi B, Javadpour S, Delfanian F, Letcher T. Failure Analysis and Mechanical Characterization of 3D Printed ABS With Respect to Layer Thickness and Orientation. J Fail Anal Prev 2016;16:467–81. https://doi.org/10.1007/s11668-016-0113-2.
Sukindar NA, Ariffin MKA, Hang Tuah Baharudin BT, Jaafar CNA, Ismail MIS. Analyzing the effect of nozzle diameter in fused deposition modeling for extruding polylactic acid using open source 3D printing. J Teknol 2016;78:7–15. https://doi.org/10.11113/jt.v78.6265.
Chen F, Xu Q, Huang F, Xie Z, Fang H. Effect of nozzle vibration at different frequencies on surface structures and tensile properties of PLA parts printed by FDM. Mater Lett 2022;325:132612. https://doi.org/10.1016/j.matlet.2022.132612.
Giri J, Chiwande A, Gupta Y, Mahatme C, Giri P. Effect of process parameters on mechanical properties of 3d printed samples using FDM process. Mater Today Proc 2021;47:5856–61. https://doi.org/10.1016/j.matpr.2021.04.283.
Tan JC, Tan MC, Low HY, Douarville-Blaise JP, Matroja R, Charnace HG. 3D interfacial geometries for co-optimized capacitance and mechanical properties in multi-material printing. Mater Today Proc 2022. https://doi.org/10.1016/j.matpr.2022.10.066.
Heidari-Rarani M, Rafiee-Afarani M, Zahedi AM. Mechanical characterization of FDM 3D printing of continuous carbon fiber reinforced PLA composites. Compos Part B Eng 2019;175:107147. https://doi.org/10.1016/j.compositesb.2019.107147.
Maurya S, Malik B, Sharma P, Singh A, Chalisgaonkar R. Investigation of different parameters of cube printed using PLA by FDM 3D printer. Mater Today Proc 2022;64:1217–22. https://doi.org/10.1016/j.matpr.2022.03.700.
Yao T, Ye J, Deng Z, Zhang K, Ma Y, Ouyang H. Tensile failure strength and separation angle of FDM 3D printing PLA material: Experimental and theoretical analyses. Compos Part B Eng 2020;188:107894. https://doi.org/10.1016/j.compositesb.2020.107894.
Marșavina L, Vălean C, Mărghitaș M, Linul E, Razavi SMJ, Berto F, et al. Effect of the manufacturing parameters on the tensile and fracture properties of FDM 3D-printed PLA specimens. Eng Fract Mech 2022;274. https://doi.org/10.1016/j.engfracmech.2022.108766.
Fernandez-Vicente M, Calle W, Ferrandiz S, Conejero A. Effect of Infill Parameters on Tensile Mechanical Behavior in Desktop 3D Printing. 3D Print Addit Manuf 2016;3:183–92. https://doi.org/10.1089/3dp.2015.0036.
Liu Z, Wang Y, Wu B, Cui C, Guo Y, Yan C. A critical review of fused deposition modeling 3D printing technology in manufacturing polylactic acid parts. Int J Adv Manuf Technol 2019;102:2877–89. https://doi.org/10.1007/s00170-019-03332-x.
Garzon-Hernandez S, Garcia-Gonzalez D, Jérusalem A, Arias A. Design of FDM 3D printed polymers: An experimental-modelling methodology for the prediction of mechanical properties. Mater Des 2020;188:108414. https://doi.org/10.1016/j.matdes.2019.108414.
Szust A, Adamski G. Using thermal annealing and salt remelting to increase tensile properties of 3D FDM prints. Eng Fail Anal 2022;132:105932. https://doi.org/10.1016/j.engfailanal.2021.105932.
Aloyaydi B, Sivasankaran S, Mustafa A. Investigation of infill-patterns on mechanical response of 3D printed poly-lactic-acid. Polym Test 2020;87:106557. https://doi.org/10.1016/j.polymertesting.2020.106557.
Tao Y, Li P, Pan L. Improving tensile properties of polylactic acid parts by adjusting printing parameters of open source 3D printers. Medziagotyra 2020;26:83–7. https://doi.org/10.5755/j01.ms.26.1.20952.
Hsueh MH, Lai CJ, Chung CF, Wang SH, Huang WC, Pan CY, et al. Effect of printing parameters on the tensile properties of 3d-printed polylactic acid (Pla) based on fused deposition modeling. Polymers (Basel) 2021;13. https://doi.org/10.3390/polym13142387.
Abeykoon C, Sri-Amphorn P, Fernando A. Optimization of fused deposition modeling parameters for improved PLA and ABS 3D printed structures. Int J Light Mater Manuf 2020;3:284–97. https://doi.org/10.1016/j.ijlmm.2020.03.003.
DOI: http://dx.doi.org/10.32497/jrm.v18i2.4195
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Jurnal Rekayasa Mesin
_____________________________________________________________________
| Publisher: Mechanical Engineering Department, Politeknik Negeri Semarang (Semarang State Polytechnic) |
_____________________________________________________________________
This work is licensed under a License Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Internasional.