Analisa Hujan Limpasan Di Sub Das Gongseng Bojonegoro Menggunakan Jaringan Saraf Tiruan

Poetri Mustika Chandy, Ery Suhartanto, Sri Wahyuni

Abstract


Discharge data or surface runoff data in a watershed need to be known to analyze water availability in the watershed. However, not all watersheds have measurements. Therefore, it needs analysis to transform rainfall data into discharge. This study aims to transform rainfall data into discharge using the Artificial Neural Network (ANN) method. The ANN model uses the Matlab R2014b application program. The research location is in the Gongseng Sub-watershed in Bojonegoro Regency, East Java. The data used are the number of rainy days, rainfall, runoff coefficients, and discharge data (as calibration). The data used are 12 years (2006-2017). Analysis was carried out on three (3) processes, namely calibration, verification and validation. The calculation results of the best calibration process when using 6 years of data (2006-2011) with epoch 2000 that produces an NSE value of 0.69 and an R value of 0.85. As for the verification and validation process when using 1 year of data (2017) with epoch 1000, it produces an NSE value of 0.79 (good) and an R value of 0.92 (a very strong relationship). From these results it was concluded that this method is appropriate to be applied at this research location, and also applied to other locations that have similarity condition with this watershed characteristics.

Keywords


surface runoff, artificial neural network, calibration, verification, validation

Full Text:

PDF

References


Ardana, Putu D.H., 2013, “Aplikasi Jaringan Syaraf Tiruan (Artificial Neural Networks) Dalam Kondisi Curah Hujan Limpasan Dengan Perbandingan Dua Algoritma Pelatihan (Studi Kasus: DAS Tukad Jogading)”, Jurnal Konferemsi Nasional Teknik Sipil, Vol. 2: A 107- A 114

Asdak, Chay, 2007, Hidrologi dam Pengelolaan Daerah Aliran Sungai, Yogyakarta, Gadjah Mada University Press

Hadihardaja, I.K., Sutikno, S., 2005, Pemodelan Curah Hujan-Limpasan Menggunakan Artificial Neural Network (ANN) dengan Metode Back Propagation, Jurnal Teknik Sipil ITP, Vol 22 No. 4: 249-258

Hasim, Agus, 2008, Prakiraan Beban Listrik Kota Pontianak Dengan Jaringan Syaraf Tiruan (Artificial Neural Network), Tesis, Bogor, Institut Pertanian Bogor

Riad, S., Mania, J., Bouchaou, L., Najjar, Y., 2003, Rainfall-Runoff Model Using an Artificial Neural Network Approach. Matematical and Computer Modelling. 40: 839-846

Soewarno, 2015, Analisis Data Hidrologi Menggunakan Metode Statistika dan Stokastik Seri Hidrologi, Yogyakarta, Graha Ilmu

Widyastuti, Siska, Suhartanto, Ery, dan Dermawan, Very, 2016, Analisa Hujan Limpasan Menggunakan Model Artifical Neural Network (ANN) di Sub DAS Lesti, Jurnal Teknik Pengairan Universitas Brawijaya

Wahyuni, Sri, 2014, Perbandingan Metode MOCK dan Nreca untuk Pegalihragaman Hujan Ke Aliran, Jurnal Rekayasa, Vol 13 No. 2: 602-624




DOI: http://dx.doi.org/10.32497/wahanats.v24i2.1730

Refbacks

  • There are currently no refbacks.


ABOUT JOURNAL

 POLICIES

SUBMISSION

 PEOPLE


OFFICE INFORMATION

 Publisher : Jurusan Teknik Sipil, Politeknik Negeri Semarang  wahanasipil@polines.ac.id, jurnalwahana@gmail.com https://jurnal.polines.ac.id/index.php/wahana
 Department of Civil Engineering, Politeknik Negeri Semarang (State Polytechnic of Semarang) Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275  +62 24 7473417 Ext. 212 For Journal Subscription

Creative Commons License
Wahana TEKNIK SIPIL: Jurnal Pengembangan Teknik Sipil (p-ISSN : 0853-8727 | e-ISSN : 2527-4333) is published by Politeknik Negeri Semarang under Creative Commons Attribution 4.0 International License.
slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor