Metode Praktis Perancangan Panjang Pipa Evaporator pada Mini Freezer Bertemperatur Rendah Menggunakan Refrigeran R404A

Kasni Sumeru, Markus Markus, Nanda Fauzan Pratama, Rizki Muliawan, Yudi Prana Hikmat

Abstract


Mini freezer yang terdapat di pasaran umumnya memiliki temperatur kabin hanya sampai -20oC. Penelitian ini bertujuan menampilkan metode perhitungan panjang pipa evaporator sehingga dapat mencapai temperatur kabin hingga -40oC dengan menggunakan refrigeran R404A. Refrigeran R404A selain relatif lebih ramah lingkungan dibandingkan dengan R22, juga memiliki temperatur Normal Boiling Point (NBP) lebih rendah dari R22. Kapasitas kompresor yang digunakan adalah 250 W yang khusus dirancang untuk refrigeran R404A. Berdasarkan pengujian didapatkan bahwa temperatur kabin dapat mencapai -40oC setelah 120 menit mesin pendingin dioperasikan. Selama beroperasi, tekanan kerja, yaitu tekanan suction dan discharge kompresor, mini freezer hampir sama dengan hasil perhitungan. Ini artinya metode yang digunakan pada penelitian ini dengan desain dan pengembangan (R&D). Namun untuk mendapatkan freezing time yang lebih singkat masih diperlukan optimasi panjang pipa evaporator masih diperlukan, supaya temperatur kabin -40oC dapat dicapai lebih singkat. Perbedaan hasil perancangan, yaitu: tekanan suction, tekanan discharge dan temperatur discharge, dengan hasil pengujian tidak lebih dari 10%.


Keywords


mini freezer; temperatur rendah; evaporator; refrigeran R404A

Full Text:

PDF

References


S. Cheng, Y., Yu, J., Qian. Improving temperature uniformity in a large frost-free chest freezer. International Journal of Refrigeration. International Journal of Refrigeration. 2022; 141: pp. 12–20.

F. Wang, H., Song, Y., Cao,. Experimental investigation on the pull-down performance of -80oC ultra-low temperature freezer. International Journal of Refrigeration. 2020; 119: pp. 1–10.

S. Arora, A., Kaushik. Theoretical analysis of a vapour compression refrigeration system with R502, R404A and R507A. International Journal of Refrigeration. 2008; 31: pp. 998–1005.

S. Tao, J., Yu. Implementation of energy efficiency standard of household refrigerator/freezer in China: Potential environmental and economic impacts. Applied Energy. 2011; 88: pp. 1890–1905.

M. W. Sethi, A., Becerra E.V., Motta, S.F.Y., Spatz. Low GWP R22 replacement for air conditioning in high ambient conditions. International Journal of Refrigeration. 2015; 57: pp. 26–34.

D. Oruc, V., Devecioglu. Thermodynamic performance of air conditioners working with R417A and R424A as alternative to R22. International Journal of Refrigeration. 2015; 55: pp. 120–128.

J. J. Garcia-pabon. Overview of low GWP mixtures for the replacement of HFC refrigerants: R134a. International Journal of Refrigeration. 2019; 111: pp. 113–123.

B. Palm. Refrigeration systems with minimum charge of refrigerant. Applied Thermal Engineering. Applied Thermal Engineering. 2007; 27 (10): pp. 1693–1701.

A. Poggi, F., Macchi-Tejeda, H., Leducq, D., Bontemps. Refrigerant charge in refrigerating systems and strategies of charge reduction. International Journal of Refrigeration. 2008; 31 (3): pp. 353–370.

C.-A. Cabello, R., Sanchez D., Llopis, R., Nebot-Andres, L. Energy evaluation of a low temperature commercial refrigeration plant working with the new low-GWP blend R468A as drop-in R404A. International Journal of Refrigeration. 2021; 127: pp. 1–11.

R. Bansal, P., Fothergill, D., Fernandes. Thermal analysis of the defrost cycle in a domestic freezer. International Journal of Refrigeration. 2010; 33: pp. 589–599.

G. P. De Rossi, F., Mauro, A.W., Musto, M., Vanoli. Long-period food storage household vertical freezer: Refrigerant charge influence on working conditions during steady condition. International Journal of Refrigeration. 2011; 34: pp. 1305–1314.

J. P. Holman, Heat Transfer, 6th ed. 1986.

B. Björk, E., Palm. Refrigerant mass charge distribution in a domestic refrigerator, part I: transient conditions. Applied Thermal Engineering. 2006; 26 (8–9): pp. 829–837.

B. Björk, E., Palm. Refrigerant mass charge distribution in a domestic refrigerator, part II: steady-state conditions. Applied Thermal Engineering. 2006; 26 (8–9) pp. 866–871.

Y. J. Lu, Y., Bai, T. Experimental investigation on a -40oC low-temperature freezer using ejector-expansion refrigeration system. International Journal of Refrigeration. 2020; 118: pp. 230–237.

Coolpack. Technical University of Denmark. [Online]. Available: www.et.dtu.dk/coolpack

Roy J Dossat. (1961). Principles of refrigeration.

Refrigerant slider Danfoss. 2023.




DOI: http://dx.doi.org/10.32497/jrm.v18i1.3878

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Jurnal Rekayasa Mesin

_____________________________________________________________________

   

Publisher:

Mechanical Engineering Department, Politeknik Negeri Semarang (Semarang State Polytechnic)
Address: Jl. Prof. Sudarto, SH., Tembalang, Semarang
Email: jurnalrekayasamesin@polines.ac.id
WA: 085669661997

_____________________________________________________________________

Lisensi Creative Commons
This work is licensed under a License Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Internasional.

View Statistics

slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor