Desain Sel Elektrolisis untuk Memproduksi MgO dari Limbah Garam Rakyat
Abstract
Pemanfaatan magnesium oksida (MgO) di bidang rekayasa sangat beragam maka diperlukan eksplorasi sumber bahan baku yang tersedia di alam. Limbah garam (bittern) memiliki kandungan magnesium yang cukup tinggi sehingga dapat dijadikan sebagai alternatif bahan baku pembentukan MgO. Pembentukan MgO dari limbah garam dapat dilakukan dengan proses elektrolisis. Tujuan dari penelitian ini adalah mendesain alat elektrolisis yang dapat digunakan untuk pembentukan MgO dari limbah bittern. Metodologi yang dilakukan meliputi merancang dan membuat alat elektrolisis 2 kompartemen dengan kapasitas total 0,75 liter. Proses elektrolisis dilakukan dengan variasi tegangan listrik dan variasi waktu yang berasal dari output power supply. Elektrolisis bittern akan menghasilkan endapan magnesium hidroksida (Mg(OH)2) yang kemudian dikeringkan pada suhu 110 oC selama 2 jam. Serbuk hasil pengeringan pada suhu 110 oC dipanaskan kembali pada suhu 700 oC selama 2 jam. Serbuk hasil pemanasan 700 oC dikarakterisasi dengan X-Ray Diffraction (XRD). Analisa XRD menunjukkan bahwa puncak difraksi yang terbentuk pada sudut 2θ merupakan karakteristik dari puncak - puncak difraksi senyawa MgO. Hasil karakterisasi XRD membuktikan bahwa desain alat elektrolisis dapat berfungsi dengan baik.
Keywords
Full Text:
PDFReferences
Neelameggham R. Primary production of magnesium. Fundam. Magnes. Alloy Metall., Elsevier; 2013, p. 1–32. https://doi.org/10.1533/9780857097293.1.
Wada S, Iijima J, Takiyama H. Crystallization Operation Method for Recovering Mg Resources from the Sea Water Desalination Process. J Chem Eng Japan 2015;48:94–8. https://doi.org/10.1252/jcej.14we157.
Femitha RD, Vaithyanathan C. Preparation of Magnesium Hydroxide Nanoparticles From Bittern. Green Chem Technol Lett 2016. https://doi.org/10.18510/gctl.2016.227.
Sanghavi RJ, Dobariya R, Bhatti S, Kumar A. Preparation of high-purity magnesium-ammonium-phosphate fertilizer using sea bittern and industrial waste streams. Environ Sci Pollut Res. 2020; 27: 7720–8. https://doi.org/10.1007/s11356-019-07445-4.
Sibak HA, El-Rafie SA, El-Sherbini SA, Osman RM, Said M, Ramadan R. Kinetic study of Nano-Magnesium oxalate precipitated from bittern. ARPN J Eng Appl Sci. 2018.
Park JW, Lee WK, Lee CH. Morphology control of magnesium oxide nanoparticles from seawater bittern using a wet decarboxylation/precipitation method. Mol Cryst Liq Cryst. 2017; 654: p. 96–102. https://doi.org/10.1080/15421406.2017.1355710.
Amrulloh H, Simanjuntak W, Situmeang RTM, Sagala SL, Bramawanto R, Fatiqin A, et al. Preparation of nano-magnesium oxide from Indonesia local seawater bittern using the electrochemical method. Inorg Nano-Metal Chem. 2020. https://doi.org/10.1080/24701556.2020.1724146.
Díaz Nieto CH, Palacios NA, Verbeeck K, Prévoteau A, Rabaey K, Flexer V. Membrane electrolysis for the removal of Mg2+ and Ca2+ from lithium rich brines. Water Res. 2019; 154: p. 117–24. https://doi.org/10.1016/j.watres.2019.01.050.
Pilarska AA, Klapiszewski Ł, Jesionowski T. Recent development in the synthesis, modification and application of Mg(OH)2 and MgO: A review. Powder Technol 2017;3 19: p. 373–407. https://doi.org/10.1016/j.powtec. 2017.07.009.
Henrist C, Mathieu J-P, Vogels C, Rulmont A, Cloots R. Morphological study of magnesium hydroxide nanoparticles precipitated in dilute aqueous solution. J Cryst Growth. 2003; 249: p. 321–30. https://doi.org/10.1016/S0022-0248(02)02068-7.
Lv J, Qiu L, Qu B. Controlled growth of three morphological structures of magnesium hydroxide nanoparticles by wet precipitation method. J Cryst Growth. 2004; 267: p. 676–84. https://doi.org/10.1016/j.jcrysgro.2004.04.034.
Gheisari Dehsheikh H, Ghasemi-Kahrizsangi S. Performance improvement of MgO-C refractory bricks by the addition of Nano-ZrSiO4. Mater Chem Phys. 2017; 202: p. 369–76. https://doi.org/10.1016/j.matchemphys.2017.09.055.
Zhu T, Li Y, Sang S, Xie Z. Fracture behavior of low carbon MgO–C refractories using the wedge splitting test. J Eur Ceram Soc 2017;37:1789–97. https://doi.org/10.1016/j.jeurceramsoc.2016.11.013.
Gu Q, Zhao F, Liu X, Jia Q. Preparation and thermal shock behavior of nanoscale MgAl2O4 spinel-toughened MgO-based refractory aggregates. Ceram Int. 2019; 45: p. 12093–100. https://doi.org/10.1016/j.ceramint.2019.03.107.
Maji J, Pandey S, Basu S. Synthesis and evaluation of antibacterial properties of magnesium oxide nanoparticles. Bull Mater Sci. 2020; 43: p. 25. https://doi.org/10.1007/s12034-019-1963-5.
Umaralikhan L, Jamal Mohamed Jaffar M. Green Synthesis of MgO Nanoparticles and it Antibacterial Activity. Iran J Sci Technol Trans A Sci. 2018; 42: p. 477–85. https://doi.org/10.1007/s40995-016-0041-8.
Hikku GS, K. J, Vignesh Kumar S. Nanoporous MgO as self-cleaning and anti-bacterial pigment for alkyd based coating. J Ind Eng Chem 2017;52:168–78. https://doi.org/10.1016/j.jiec.2017.03.040.
Shiogai J, Ito Y, Mitsuhashi T, Nojima T, Tsukazaki A. Electric-field-induced superconductivity in electrochemically etched ultrathin FeSe films on SrTiO 3 and MgO. Nat Phys. 2016. https://doi.org/10.1038/nphys3530.
Purnama Putra H, Pandu Mursanto B, Handayani A. Utilization of Human Urine as Fertilizer with Magnesium Oxide (MgO), Zeolite and Activated Carbon as Absorbent. Int J Adv Sci Eng Inf Technol. 2014; 4: p. 173. https://doi.org/10.18517/ijaseit.4.3.395.
Martı́nez AM, Børresen B, Haarberg GM, Castrillejo Y, Tunold R. Electrodeposition of Magnesium from CaCl[sub 2]-NaCl-KCl-MgCl[sub 2] Melts. J Electrochem Soc. 2004; 151: C508. https://doi.org/10.1149/1.1758814.
Goodridge F, Scott K. Electrochemical Process Engineering. 1st ed. Boston, MA: Springer US; 1995. https://doi.org/10.1007/978-1-4899-0224-5.
Topayung D. Effect of Electric Current and Process Time in The Thickness and Mass Layer Formed on Electroplating Steel Plates. J Ilm Sains. 2011; 11: p. 97–101.
Buyang Y, Asmaraningrum HP. Pengaruh Voltase Dan Waktu Terhadap Tembaga Menggunakan Metode Elektroplating. Magistra. 2015; 2: 226–36.
Nemade KR, Waghuley SA. Synthesis of MgO Nanoparticles by Solvent Mixed Spray Pyrolysis Technique for Optical Investigation. Int J Met. 2014; 2014: p. 1–4. https://doi.org/10.1155/2014/389416.
DOI: http://dx.doi.org/10.32497/jrm.v16i2.2574
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Jurnal Rekayasa Mesin
_____________________________________________________________________
| Publisher: Mechanical Engineering Department, Politeknik Negeri Semarang (Semarang State Polytechnic) |
_____________________________________________________________________
This work is licensed under a License Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Internasional.