Analisa Numerik Pengaruh Karakteristik Gelombang Air Laut pada Wave Energy Converter Tipe Bottom Hinge Menggunakan Metode Smoothed Particles Hydrodynamics

Authors

  • Avicenna An Nizhami Politeknik Negeri Semarang
  • Elfrida Rizky Riadini

DOI:

https://doi.org/10.32497/jrm.v16i1.2472

Keywords:

free surface, ocean waves, torsional vibration, SPH, wave energy

Abstract

Energi terbarukan yang bersumber dari gelombang air laut  menjadi dasar penelitian ini. Penelitian ini bertujuan untuk menganalisa Wave Energy Converter (WEC) tipe bottom hinge menggunakan metode numerik Smoothed Particle Hydrodynamics (SPH). Dinamika gerak dari WEC didekati dengan persaman getaran torsional dengan memodelkan generator sebagai spring dan damper. Pada metode SPH domain penelitian didiskritkan menjadi partikel yang merepresentasikan partikel fluida dan partikel solid. Persamaan atur yang digunakan adalah konservasi massa dan momentum. Validasi menunjukkan bahwa metode SPH dapat dengan akurat meprediksi dinamika gelombang air laut. Gaya hidrodinamis dan energi yang dihasilkan oleh WEC mempunyai nilai yang fluktuatif namun dengan pola yang periodik.

Author Biography

Avicenna An Nizhami, Politeknik Negeri Semarang

Jurusan Teknik Mesin

References

Kementrian Energi dan Sumber Daya Mineral, "RENSTRA (RENCANA STRATEGIS) DITJEN EBTKE 2015-2019". 2015.

J. Falnes, “A review of wave-energy extraction,” Mar. Struct., vol. 20, no. 4, pp. 185”“201, 2007, doi: 10.1016/j.marstruc.2007.09.001.

A. F. D. O. Falcão, “Wave energy utilization: A review of the technologies,” Renew. Sustain. Energy Rev., vol. 14, no. 3, pp. 899”“918, 2010, doi: 10.1016/j.rser.2009.11.003.

R. G. Dean, R. A. Dalrymple, WATER WAVE MECHANICS FOR ENGINEERS AND SCIENTISTS, ADVANCED S. World Scientific, 2000.

Y. Li, Y.-H. Yu, “A synthesis of numerical methods for modeling wave energy converter-point absorbers,” Renew. Sustain. Energy Rev., vol. 16, no. 6, pp. 4352”“4364, 2012, doi: 10.1016/j.rser.2011.11.008.

A. Iturrioz, R. Guanche, J. L. Lara, C. Vidal, I. J. Losada, “Validation of OpenFOAM ® for Oscillating Water Column three-dimensional modeling,” Ocean Eng., vol. 107, pp. 222”“236, Oct. 2015, doi: 10.1016/j.oceaneng.2015.07.051.

M. B. Liu, G. R. Liu, Smoothed particle hydrodynamics (SPH): An overview and recent developments, vol. 17, no. 1. 2010.

B. Ren, M. He, P. Dong, H. Wen, “Nonlinear simulations of wave-induced motions of a freely floating body using WCSPH method,” Appl. Ocean Res., vol. 50, pp. 1”“12, 2015, doi: 10.1016/j.apor.2014.12.003.

A. J. C. Crespo et al., “DualSPHysics: Open-source parallel CFD solver based on Smoothed Particle Hydrodynamics (SPH),” Comput. Phys. Commun., vol. 187, pp. 204”“216, 2015, doi: 10.1016/j.cpc.2014.10.004.

M. Gomez-Gesteira, B. D. Rogers, A. J. C. Crespo, R. a. Dalrymple, M. Narayanaswamy, J. M. Domínguez, “SPHysics”“development of a free-surface fluid solver”“Part 1: Theory and formulations,” Comput. Geosci., vol. 48, no. January 2016, pp. 289”“299, 2012, doi: 10.1016/j.cageo.2012.02.029.

M. Gomez-Gesteira, A. J. C. Crespo, B. D. Rogers, R. A. Dalrymple, J. M. Dominguez, A. Barreiro, “SPHysics - development of a free-surface fluid solver - Part 2: Efficiency and test cases,” Comput. Geosci., vol. 48, pp. 300”“307, 2012, doi: 10.1016/j.cageo.2012.02.028.

A. Colagrossi, M. Antuono, D. Le Touze, “Theoretical considerations on the free-surface role in the smoothed-particle-hydrodynamics model,” Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys., vol. 79, no. 5, pp. 1”“13, 2009, doi: 10.1103/PhysRevE.79.056701.

J. J. Monaghan, “Simulating free surface flows with SPH,” Journal of Computational Physics, vol. 110, no. 2. pp. 399”“406, 1994, doi: 10.1006/jcph.1994.1034.

D. Molteni, A. Colagrossi, “A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH,” Comput. Phys. Commun., vol. 180, no. 6, pp. 861”“872, 2009, doi: 10.1016/j.cpc.2008.12.004.

G. Fourtakas, J. M. Dominguez, R. Vacondio, B. D. Rogers, “Local uniform stencil (LUST) boundary condition for arbitrary 3-D boundaries in parallel smoothed particle hydrodynamics (SPH) models,” Comput. Fluids, vol. 190, pp. 346”“361, 2019, doi: 10.1016/j.compfluid.2019.06.009.

B. Leimkuhler, C. Matthews, Molecular Dynamics Interdisciplinary Applied Mathematics. Springer International, 2016.

B. Ren, M. He, P. Dong, H. Wen, “Nonlinear simulations of wave-induced motions of a freely floating body using WCSPH method,” Appl. Ocean Res., vol. 50, pp. 1”“12, 2015, doi: 10.1016/j.apor.2014.12.003.

B. M. Sumer, J. Fredsøe, Hydrodynamics around cylindrical structures, vol. 12. 2006.

Downloads

Published

2021-04-27