MODIFIKASI KOEFISIEN DIAGRAM TEGANGAN BETON SERAT PADA BERBAGAI SUHU

Authors

  • Primasiwi Harprastanti Jurusan Teknik Sipil Politeknik Negeri Semarang
  • Antonius Antonius Jurusan Teknik Sipil Universitas Islam Sultan Agung
  • Purwanto Purwanto Departemen Teknik Sipil, Fakultas Teknik, Universitas Diponegoro
  • Nor Puji Lestari Jurusan Teknik Sipil Politeknik Negeri Semarang
  • Baiq Heny Sulistiawati Jurusan Teknik Sipil Politeknik Negeri Semarang
  • Danang Isnubroto Jurusan Teknik Sipil Politeknik Negeri Semarang

DOI:

https://doi.org/10.32497/wahanats.v26i2.3127

Keywords:

fiber, concrete, steel wire, tension diagram

Abstract

Fiber concrete is a building material that has been widely introduced in Indonesia. The advantages of fiber concrete are that it can increase the tensile strength of concrete, besides fiber concrete can increase ductility compared to concrete without fibers. In this study, steel wire fibers were used. The weakness of this fiber concrete is against high temperatures. Experiments were carried out with reinforcing fiber concrete at temperatures of 332 °C, 621.4 °C, and 957.4 °C. Fiber concrete that is burned at high temperatures has a significant decrease in strength when it is burned reaching a temperature of 957.4 °C. On the stress curve, fiber concrete that is burned at a temperature of 621.4 °C has a stress drop of up to 67%. The stress-strain behavior of steel-wire fiber concrete is very ductile when compared to fiber-free concrete. In the concrete stress diagram, the ß1 and k3 coefficients in fiberless concrete and fiber concrete are not the same. Based on the calculations carried out, the value of k3 in fiber concrete at various temperatures is taken as 0.92fc”™, while the value of ß1 in fiber concrete at various temperatures is 0.75.

Author Biographies

Primasiwi Harprastanti, Jurusan Teknik Sipil Politeknik Negeri Semarang

Jurusan Teknik Sipil Politeknik Negeri Semarang

Antonius Antonius, Jurusan Teknik Sipil Universitas Islam Sultan Agung

Jurusan Teknik Sipil Universitas Islam Sultan Agung

Purwanto Purwanto, Departemen Teknik Sipil, Fakultas Teknik, Universitas Diponegoro

Departemen Teknik Sipil, Fakultas Teknik, Universitas Diponegoro

Nor Puji Lestari, Jurusan Teknik Sipil Politeknik Negeri Semarang

Jurusan Teknik Sipil Politeknik Negeri Semarang

Baiq Heny Sulistiawati, Jurusan Teknik Sipil Politeknik Negeri Semarang

Jurusan Teknik Sipil Politeknik Negeri Semarang

Danang Isnubroto, Jurusan Teknik Sipil Politeknik Negeri Semarang

Jurusan Teknik Sipil Politeknik Negeri Semarang

References

ACI Commite 544. May 1982, State of The Art Report on Fibre Reinforced Concrete, ACI 544. IR-82, ACI, Detroit, Michigan Antonius, Setiyawan, P., 2006, Kajian besaran mekanis beton berserat mutu tinggi (studi eksperimental), Jurnal Wahana Teknik Sipil, Politeknik Neg. Semarang, Vol. 11(3), 74-81.

Antonius, Widhianto, A., Darmayadi, D., Asfari, G.D., 2014, Fire Resistance of Normal and High Strength Concrete with Contains of Steel Fibre, Asian Journal of Civil Engineering vol.15 no. 5, pages 655-669.

Aslani F., Bastami M., 2011, Constitutive Relationships for Normal and High Strength Concrete at Elevated Temperature, ACI Materials Journal, 355-364.

ASTM C 39 ”“ 94, 1996, Test Methode for Compressive Strength of Cylindrical Concrete Spesimens, Annual Books of ASTM Standards, USA.

Badan Standarisasi Indonesia, SNI 2847-2013, Persyaratan Beton Struktural untuk Bangunan Gedung.

Badan Standarisasi Indonesia, SNI 7656-2012, Tata Cara Pemilihan Campuran Beton Normal, Beton Serat dan Beton Massa.

British Standard, 2004, Design of Concrete Structure. Part 1.2: General Rules-Structural Fire Design, Commission of European Communities, Brussels, Belgium. 100 p.

Dhinakaran, G., Vijayarakhavan, S., Kumar, K.R, 2016, Fracture and Flexural Behavior of High-performance Fiber Reinforced Concrete, Asian Journal of Civil Engineering, Volume 17(1), pp. 1”“14

Iqbal, S.A., Ali, K., Holschemacher, Bier, T.A., 2015, Mechanical Properties of Steel Fiber Reinforced High Strength Lightweight Self-Compacting Concrete (SHLSCC), Construction and Building Materials, Volume 98, pp. 325”“333

Janani, S., Santhi, A.S., 2018, Multiple Linear Regression Model for Mechanical Properties and Impact Resistance of Concrete with Fly Ash and Hooked-end Steel Fibers, International Journal of Technology, Volume 9(3), pp. 526”“536

Jansson, A., Lofgren, I., Lundgren, K., Gyltoft, K., 2012, Bond of Reinforcement in Selfcompacting Steel-fibre-reinforcement Concrete, Magazine of Concrete Research, Volume 64(7), pp. 617”“630

Kodur, V.K.R., Dwaikat M.M.S., Dwaikat MB. 2008, High-Temperature Properties of Concrete for Fire Resistance Modeling of Structure, ACI Materials Journal. 355-364.

Li L, Purkiss JA, 2005, Stress-Strain Constitutive Equations of Concrete Material at Elevated Temperature, Fire Safety Journal, 669-686.

Suhendro, B, 1991, Pengaruh Fiber Kawat Lokal Pada Sifat ”“ sifat Beton, Laporan Penelitian, Lembaga Penelitian UGM, Yogyakarta.

Downloads

Published

2021-12-01