Link Slab Capacity In Bridges Supported By Lead Rubber Bearing And Elastomer

Authors

  • Inas Novikasari Department of Civil Engineering, Jakarta State Polytechnic
  • Anis Rosyidah Department of Civil Engineering, Jakarta State Polytechnic

DOI:

https://doi.org/10.32497/wahanats.v24i2.1725

Keywords:

elastomer, lead rubber bearing, link slab, seismic isolation system

Abstract

Debris accumulation in bridge slab gaps which use expansion joints can restrain deck expansion, causing undesirable forces on floor deck and damage to the structure. In order to avoid the worst possibility that can occur, an alternative using link slab is utilized. The use of link slab at high level seismic force location, requires the Seismic Isolation System on bridge to reduce the seismic force. The application of Seismic Isolation System can be conducted by Lead Rubber Bearing (LRB) type of seismic isolator. This study compares the use of Lead Rubber Bearing (LRB) and elastomer on bridge link slabs against the dimension of the link slab. In this study structural modeling used 2 models: bridges supported by elastomer and bridges supported by LRB with software-made. The link slab analysis approach used were analytical methods or classical methods. Based on results of the analysis, the width of the crack that occured on bridge supported by LRB is 0.218 mm while on the bridge supported by elastomer is 0.269 mm. The use of Lead Rubber Bearing (LRB) type of support will give more advantages to the design of the link slab since it results in smaller crack design criteria.

Author Biographies

Inas Novikasari, Department of Civil Engineering, Jakarta State Polytechnic

Department of Civil Engineering, Jakarta State Polytechnic

Anis Rosyidah, Department of Civil Engineering, Jakarta State Polytechnic

Department of Civil Engineering, Jakarta State Polytechnic

References

R-01, A., 2001, Control of Cracking of Concrete Structure

Alvin Giovanni, D. S., 2018, Studi Komparasi Tipe Tumpuan Terhadap Besarnya Gaya Gempa pada Pilar Jembatan (Studi kasus: Proyek Jakarta-Cikampek II Elevated)

Bagus Ansori, M., 2012, Studi Respon Seismik Jembatan Balok Komposit Sederhana yang Diretrofit dengan Link Slab Ditinjau dari Wilayah Zona Gempa. Jurnal Teknik ITS, 1

Caner, A., 1997, Analysis and Design of Jointless Bridge Decks Supported by Simple-Span Girders

Caner, A., & Zia, P., 1998, Behavior and Design of Link Slabs for Jointless Bridge Decks. PCI Journal, 43(3), 68”“80. https://doi.org/10.15554/pcij.05011998.68.80

Iman, M. F. N., Sugihardjo, H., & Sidharta, A. S., 2012, Studi Retrofitting Jembatan Komposit Menggunakan Link Slab Akibat Beban Gempa pada Berbagai Kondisi Tanah Oprit

Irawan, F., 2012, Studi Penggunaan Link Slab pada Jembatan Komposit

Kementerian Pekerjaan Umum dan Perumahan Rakyat, 2010, Peta Hazard Gempa Indonesia 2010

Lestari, T. A. T. (2018). Desain Sambungan Menggunakan Liton Pratnk Slab Pada Jembatan Gelagar Beekan

Qian, 2009, Introduction of transition zone design for bridge deck link slabs using ductile concrete

SNI, 2013, Persyaratan beton struktural untuk bangunan gedung Badan Standardisasi Nasional. Retrieved from www. bsn.go.id

SNI, 2016a, Pembebanan untuk jembatan. Retrieved from www. bsn.go.id

SNI, 2016b, Perancangan jembatan terhadap beban gempa

Sugihardjo, H., Piscesa, B., & Irawan, F., 2012, Studi Penggunaan Link Slab pada Jembatan Komposit. Kolokium Jalan Dan Jematan, p. 11

Downloads

Published

2019-12-31