Classification of Covid-19 Survillance Datasets using the Decision Tree Algorithm

ivandari Ivandari, M. Adib Al Karomi


Covid-19 is a new type of mutated virus that has been discovered and studied throughout the world. For the time being, no effective drug has been found to treat or prevent this disease. One way that governments around the world are doing is limiting physical contact with people with COVID-19. Data mining is a computer science to study data and perform extraction to get new knowledge. One technique in data mining is classification. C45 is one of the best classification algorithms. The result of the c45 algorithm can be a decision tree. Decision trees are used because the results can be well represented. and can be easily understood in human language. This study classified the Covid-19 surveillance dataset using the Decission tree. The Covid-19 surveillance dataset was obtained from a public data portal, namely the UCI machine learning repository. This study resulted in better accuracy than previous studies using the same dataset. The level of accuracy obtained by using the decision tree algorithm is 65%. Although in this study the accuracy value has increased by 10%, the level of accuracy is still relatively low. The low level of accuracy is due to the dataset used only has 7 attributes and 14 records


Decision tree, covid-19 surveillance, accuracy

Full Text:



I. H. Witten, E. Frank, and M. A. Hall, Data Mining: Practical Machine Learning Tools and Techniques 3rd Edition. Elsevier, 2011.

X. Wu et al., Top 10 algorithms in data mining, vol. 14, no. 1. 2007.

M. A. Alkaromi, “Information Gain untuk Pemilihan Fitur pada Klasifikasi Heregistrasi Calon Mahasiswa dengan Menggunakan K-NN,” 2014.

Ivandari and M. A. Al Karomi, “Algoritma K-NN untuk klasifikasi dataset Covid-19 survillance,” IC Tech, vol. 16, no. 1, pp. 12–15, 2021, [Online]. Available:

D. T. Larose, Discovering Knowledge in Data. John Wiley & Sons, 2005.

E. Prasetyo, Data Mining Konsep dan Aplikasi menggunakan Matlab. Yogyakarta: Andi Offset, 2012.

B. Santosa, Data Mining Teknik Pemanfaatan Data untuk Keperluan Bisnis, Edisi Pert. Yogyakarta: Graha Ilmu, 2007.

A. Christobel and D. . Sivaprakasam, “An Empirical Comparison of Data Mining Classification Methods,” vol. 3, no. 2, pp. 24–28, 2011.

A. H. M. Ragab, A. Y. Noaman, A. S. Al-Ghamdi, and A. I. Madbouly, “A Comparative Analysis of Classification Algorithms for Students College Enrollment Approval Using Data Mining,” Proc. 2014 Work. Interact. Des. Educ. Environ. - IDEE ’14, pp. 106–113, 2014, doi: 10.1145/2643604.2643631.

A. Ashari, I. Paryudi, and A. M. Tjoa, “Performance Comparison between Naïve Bayes , Decision Tree and k-Nearest Neighbor in Searching Alternative Design in an Energy Simulation Tool,” vol. 4, no. 11, pp. 33–39, 2013.

S. Susanto and D. Suryadi, Pengantar Data Mining: Menggali Pengetahuan dari Bongkahan Data. Yogyakarta: Andi Offset, 2010.

D. R. Amancio et al., “A systematic comparison of supervised classifiers,” Oct. 2013, Accessed: Oct. 20, 2014. [Online]. Available:

J. Han and M. Kamber, Data Mining: Concepts and Techniques Second Edition. Elsevier, 2006.


Kusrini and L. E. Taufiq, Algoritma Data Mining. Yogyakarta: Andi Offset, 2009.

F. Gorunescu, Data Mining: Concept, Models and Techniques, Vol 12. Berlin: Heidelberg: Springer Berlin Heidelberg, 2011.

M. A. Alkaromi, “Komparasi Algoritma Klasifikasi untuk dataset iris dengan rapid miner,” IC Tech, vol. XI, no. 2, 2014.

I. Indrayanti, S. Devi, and M. A. Al Karomi, “Peningkatan Akurasi Algoritma KNN dengan Seleksi Fitur Gain Ratio untuk Klasifikasi Penyakit Diabetes Mellitus,” IC-TECH, vol. XIII, no. 2, pp. 1–6, 2017.



  • There are currently no refbacks.

ISSN: 2541-6340
Online ISSN: 2541-6359


View My Stats

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.