APLIKASI VALUE ENGINEERING PADA PEKERJAAN TAMBAH KURANG UNTUK MENINGKATKAN EFISIENSI BIAYA KONTRAKTOR

(Studi Kasus: Gedung D BPOM Jakarta)

Indra Hidayat^{1,*)}, Kartono Wibowo¹⁾, Sumirin¹⁾

¹⁾Program Studi Magister Teknik Sipil Universitas Islam Sultan Agung Jl. Raya Kaligawe Km. 04 Terboyo Kulon, Genuk, kota Semarang, Jawa Tengah, 50112

*)Correspondent Author: indra.hidayat@outlook.com

Abstract

Cost planning is one of the important things in a development project, both for the project owner and the implementing contractor. The contractor has a planned cost target at the tender stage, however, changes in costs may occur during the implementation period due to additional or less work and resulting in changes in costs. To be able to achieve the cost efficiency target, this can be done by carrying out value engineering. The stages of the value engineering method consist of the information stage, function analysis stage, creativity stage, evaluation stage, development stage and recommendation stage. The application of value engineering in the BPOM Building D Construction Project can provide an increase cost and still maintain function. Contractor get cost efficiency of IDR 1,528,657,929,- or 2.52%, while the project owner gets a cost efficiency of IDR 1,182,279,319 or 1.66%.

Keywords: rekaya nilai, value engineering, keuntungan, alternatif desain, pekerjaan tambah kurang.

PENDAHULUAN

Perencanaan biaya menjadi salah satu hal penting dalam sebuah proyek pembangunan baik bagi pemilik proyek maupun bagi kontraktor pelaksana. Mutlak bagi kontraktor untuk menjaga biaya pelaksanaan proyek agar dapat tetap sesuai dengan perencanaan awal tender. Tidak sedikit terjadi perubahan biaya pada sebuah proyek dikarenakan adanya perbedaan perhitungan saat perencanaan seperti perbedaan gambar dan lapangan, jenis pekerjaan yang bertambah menyesuaikan kondisi lapangan pada sebuah proyek (Putra dkk, 2022).

Pekerjaan tambah kurang

menjadi salah satu tindakan yang lakukan apabila tahapan dalam pelaksanaan konstruksi terdapat perubahan lingkup pekerjaan, waktu, desain, spesifikasi maupun pasal yang terdapat dalam kontrak. Dampak yang ditimbulkan dari adanya pekerjaan tambah kurang yang diakibatkan dari kesalahan perencanaan atau adalah pelaksanaan adanya perubahanan pencapaian biaya dan waktu yang berubah dari desain awal (Khalim dkk, 2021).

Kontraktor harus menyusun ulang rencana anggaran biaya pelaksanaan proyek berdasarkan lingkup pekerjaan kontrak baru. Hal tersebut dapat membuat struktur biaya dan keuntungan berubah dari yang ditargetkan oleh kontraktor. Salah satu metode untuk menjaga atau untuk meningkatkan efisiensi biaya yang dapat dilakukan kontraktor yaitu dengan menerapkan value engineering saat terdapat pekerjaan tambah kurang.

Value engineering adalah metode yang terorganisir untuk menganalisis suatu masalah dengan tujuan untuk fungsi-fungsi mendapatkan diinginkan dengan biaya dan hasil yang optimal (Candra, 1987). Hasil yang diharapkan dalam penerapan analisis value engineering adalah didapat beberapa alternatif pengganti pekerjaan yang mempunya biaya lebih efisien tanpa mengurangi fungsi awal (Dhanianto, 2021). Seperti penerapan value engineering pada pekerjaan lahan parkir dengan spesifikasi rabat beton dengan paving block didapatkan efisiensi harga lebih baik tanpa merubah fungsi dari desain yaitu untuk lahan parkir (Kormomolin dkk, 2020).

Contoh lain pekerjaan dengan analisis value engineering vaitu alternatif penggunaan struktur baja profil WF menggantikan struktur baja beton bertulang untuk mendapatkan efisiensi biaya dan waktu dalam pelaksanaan pekerjaan (Albertus dkk, 2020). Melakukan value engineering dengan tepat diharapkan dapat menjaga target biaya pelaksanaan bahkan meningkatkan efisiensi biaya kontraktor pada Proyek Pembangunan Gedung D BPOM.

Manfaat Value Engineering

Manfaat penerapaan *value engineering* yang diambil dari beberapa sumber dapat dijelaskan sebagai berikut:

- Berkurangnya biaya yang diperlukan dalam penyelesaian Proyek (Dell'Isola, 1982)
- Meningkatkan efisiensi Proyek (Snoodgrass, 1994).
- 3. Meningkatkan nilai (*value*) pada Proyek menjadi lebih baik (SAVE, 2007).
- 4. Meningkatkan kinerja dan kulitas pada Proyek (Younker, 2003).

Konsep Value Engineering

Menurut Kelly (2004), VE merupakan suatu nilai yang didapat melalui fungsi yang dicapai dengan biaya yang dicapai dengan biaya yang dikeluarkan, adapun persamaan nilai sebagai berikut:

Nilai (
$$value$$
) =
$$\frac{\text{Fungsi } (Function)}{\text{Fungsi } (Function)}$$

Alternatif hubungan nilai dengan fungsi dan biaya dapat dilihat dalam tabel sebagai berikut:

Tabel 1. Alternatif hubungan Nilai dengan Fungsi dan Biaya

	8	j
Value	→	Biaya turun
(V)	T	namun fungsi dan
	•	kualitas
		dipertahankan
Value	†	Fungsi meningkat
(V)		biaya tetap
	_	
Value	†	Meningkatkan
(V)		fungsi dan kualitas
	\downarrow	serta mereduksi
	•	biaya
Value	†	Fungsi meningkat
(V)	—	biaya meningkat

Tahapan Penerapan Value Engineering

Dalam penerapan *value engineering* menurut SAVE (2007), rencana kerja *value engineering* terdiri dari 6 fase sebagai berikut:

1. Fase Informasi

Hunter & Kelly (2007) menyatakan sumber-sumber informasi diperlukan pada tahap awal studi adalah yang diharapkan oleh analis mengenai permasalahan/isu proyek dan menetapkan fungsi proyek. Informasi yang dikumpulkan dapat data-data berupa proyek pembangunan Detail seperti Engineering Design (DED), Engineering Estimate (EE), tujuan pembangunan serta pengolahan awal informasi yang sudah didapatkan melakukan seperti analisis pareto.

2. Fase Analisis Fungsi

Menurut SAVE (2007) analisis fungsi merupakan proses mendefinisikan, mengevaluasi dan mengklasifikasikan fungsi-fungsi. Pada fase analisis fungsi dilakukan identifikasi fungsi komponen bangunan dan mengklasifikasikan hasil dari indentifikasi fungsi masing-masing komponen bangunan. Pengembangan model fungsi dapat menggunakan alat/tools Function Analysis System Technique Fast Diagram (FAST).

3. Fase Kreatifitas

Setelah diketahui fungsi masingmasing pada komponen pembangunan kemudian pada fase ini dilakukan identifikasi bahan material dengan fungsi yang sama untuk dijadikan alternatif desain. Banyaknya literasi beragamnya ide inovatif sangat berperan penting dan membantu pada fase ini. Selama proses pengembangan kreatifitas, tim VE akan memanfaatkan fungsi pada komponen atau pekerjaan yang sedang dibahas sebagai alat untuk menghasilkan ide alternatif (Kasi, Snodgrass, & Thomas, 1994).

4. Fase Evaluasi

Alternatif-alternatif desain yang sudah disusun pada fase sebelumnya pada tahapan ini berdasarkan diperhitungkan parameter-parameter seperti keuntungan dan kerugian, biaya, pelaksanaan, kemudahan pemasangan, ketersediaan material, tingkat perawatan, dan tingkat keawetan. Analisis keuntungan dan kerugian berfungsi dalam fase ini sebagai penyeleksi beberapa alternatif desain dari fase sebelumnya agar dapat mempersempit pilihan.

5. Fase Pengembangan

Beberapa aktivitas yang dilakukan pada fase pengembangan mengacu SAVE Standar (2007)adalah mengklasifikasi dan mengelompokkan masing-masing ide untuk dikembangkan dianalisis manfaat biaya (cost benefit). Hasil yang didapatkan untuk menetapkan alternatif desain dengan manfaat tertinggi untuk dilanjutkan ke fase presentasi dan rekomendasi. (Dhanianto, 2021)

6. Fase Presentasi & Rekomendasi Tahap rekomendasi berisi usulan terbaik dari beberapa alternatif desain yang ada sehingga dapat menjadi pertimbangan dalam diskusi untuk menentukan alternatif desain terbaik dari segi fungi sampai dengan manfaat biaya tertinggi.

METODE PENELITIAN

Dalam penelitian ini subyek yang diteliti yaitu aplikasi value engineering (VE) pada pekerjaan tambah kurang Proyek Pembangunan Gedung D Badan POM yang dibangun tahun 2019 di Jakarta. Metode komparasi digunakan untuk membandingan nilai biaya awal proyek dengan nilai biaya akhir proyek setelah dilakukan analisa value engineering sehingga didapatkan besaran nilai efisiensi.

Alur penelitian dimulai dengan mengumpulkan data primer dan data sekunder, kemudian melakukan evaluasi *value engineering* sesuai SAVE (2007) yaitu dimulai dari fase informasi, fase analisis fungsi, fase kreatifitas, fase evaluasi, fase pengembangan, fase presentasi dan fase rekomendasi.

HASIL DAN PEMBAHASAN

Fase Informasi

Informasi yang didapatkan pada fase informasi ini berupa data-data proyek vang diberikan oleh kontraktor pelaksana seperti gambar kerja, nilai kontrak, nilai MC0 (Mutual Chek 0%) atau nilai hitungan volume bersama berdasarkan gambar awal sebelum dimulainya pekerjaan, Rencana Anggaran Biaya (RAB), Rencana Anggaran Pengendalian Tender (RAPT) dan juga Real Cost (RC). Dari data tersebut diolah untuk didapatkan informasi berupa pareto dari beberapa data tersebut.

Pareto merupakan prinsip yang mengedepankan penggunaan aset terbaik dalam suatu entitas secara efisien untuk memberikan nilai yang maksimal. Tahapan penyusunan pareto dalam penelitian ini dimulai dari menyusun biaya pareto RAB untuk mengetahui biaya pekerjaan terbesar kemudian disusul dengan pengolahan data pareto dari RAPT dan RC. Hal ini berguna untuk mengetahui pekerjaan dengan selisih biaya harga terbesar sehingga satuan dapat dilakukan efisiensi biaya pada item pekerjaan tersebut.

Tabel 2. Perbandingan Nilai RAB

		<u>e</u>	
No	Pekerjaan	RAB AWAL	RAB MC0
1	Pek Persiapan	1.977.586.995	1.977.586.995
2	Pek Struktur	20.986.787.297	22.137.269.426
3	Pek STP/GWT	780.716.717	780.716.717
4	Pek Arsitektur	26.057.404.396	26.057.404.396
5	Pek Mekanikal	11.576.865.798	11.576.865.798
6	Pek Elektrikal	10.240.037.710	10.240.037.710
	Jumlah	71.619.398.916	72.769.881.045
	PPN 10%	7.161.939.892	7.276.988.104
	Jumlah Total	78.781.338.807	80.046.869.149

Berdasarkan Tabel 2 nilai perbandingan RAB MC0 mengalami kenaikan biaya sehingga dibutuhkan value engineering untuk didapatan efisiensi biaya. Langkah selanjutnya

dilakukan analisa pareto dengan mencari bobot persentase masingmasing sehingga diketahui persentase pekerjaan paling tinggi untuk dapat dilakukan *value engineering*.

Tabel 3. Hasil Analisa Pareto RAB

No	Pekerjaan	RAB MC0 (Rp)	Persentase Harga
1	Pek Persiapan	1.977.586.995	2,72%
2	Pek Struktur	22.137.269.426	30,42%
3	Pek STP/GWT	780.716.717	1,07%
4	Pek Arsitektur	26.057.404.396	35,81%
5	Pek Mekanikal	11.576.865.798	15,91%
6	Pek Elektrikal	10.240.037.710	14,07%
	Total	72.769.881.045	100,00%

Tabel 4. Hasil Analisa Pareto RAPT

No	Pekerjaan	RAPT MC0 (Rp)	Persentase Harga
1	Pek Persiapan	339.100.700	0,50%
2	Pek Struktur	19.765.761.792	29,17%
3	Pek STP/GWT	685.220.761	1,01%
4	Pek Arsitektur	20.127.929.355	29,71%
5	Pek Mekanikal	10.404.077.033	15,36%
6	Pek Elektrikal	9.463.451.805	13,97%
7	Overhead	6.964.236.422	10,28%
-	Total	67.749.777.870	100,00%

Tabel 5. Hasil Analisa Pareto RC

No	Pekerjaan	RC MC0 (Rp)	Persentase Harga
1	Pek Persiapan	339.100.700	0,51%
2	Pek Struktur	19.232.086.223	28,76%
3	Pek STP/GWT	666.719.800	1,00%
4	Pek Arsitektur	20.013.205.494	29,93%
5	Pek Mekanikal	10.154.379.185	15,19%
6	Pek Elektrikal	9.151.157.895	13,69%
7	Overhead	7.312.448.243	10,94%
	Total	66.869.097.543	100,00%

Berdasarkan beberapa sumber biaya didapat pekerjaan arsitektur menjadi pekerjaan dengan bobot paling besar. Selanjutnya akan dilakukan pendetailan untuk didapat tiga item arsitektur tersebut dapat dilihat pada pekerjaan dengan persentasi biaya terbesar dari selisih biaya RC terhadap RAPT sehingga nantinya dapat dilakukan fase berikutnya yaitu fase analisis fungsi. Tiga item pekerjaan Tabel 6.

Tabel 6. Hasil Analisa Pareto Pekerjaan Arsitektur

Pekerjaan	RAPT MC0 (Rp)	RC MC0 (Rp)	Persentase
(a)	(b)	(c)	(d=c/b)
HT 120x120	1.338.528.977	1.571.105.558	117,38%
Metal ceiling	289.888.339	452.225.809	156,00%
Hollow Metal ceiling	245.448.500	348.090.600	141,82%

Fase Analisis Fungsi

Pada fase analisis fungsi ini menggunakan metode *activity function matrix* yaitu menjabarkan fungsi primer dan fungsi sekunder. Fungsi yang dijabarkan dari ketiga item

pekerjaan arsitek dengan persentasi selisih biaya terbesar dari analisis pareto pada fase informasi. Pada tabel 7 activity function pekerjaan pelapis lantai telah dilakukan analisa fungsi.

Tabel 7. Activity Function Pekerjaan Pelapis Lantai

	•		
Pekerjaan	Kata Kerja	Kata Benda	Fungsi
Pelapis lantai	Meratakan	Lantai	Primer
	Melindungi	Lantai	Primer
	Memudahkan	Berjalan	Primer
	Mengurangi	Debu	Sekunder
	Meredam	Getaran	Sekunder
	Memberikan	Kenyamanan	Sekunder
	Menambah	Estetika	Sekunder

Tabel 8. Activity Function Pekerjaan Plafon

Pekerjaan	Kata Kerja	Kata Benda	Fungsi
Plafon	Melindungi	Ruang	Primer
	Membatasi	Ruang	Primer
	Menahan	Panas	Primer
	Meredam	Suara	Sekunder
	Memberikan	Kenyamanan	Sekunder
	Menambah	Estetika	Sekunder

Setelah didapatkan hasil dari fase analisis fungsi ini selanjutnya masuk kedalam tahap fase kreatifiatas.

Fase Kreatifitas

Dalam fase ini peneliti menggunakan metode *checklist*, yaitu dengan cara membuat parameter untuk membatasi ide-ide yang muncul sebagai material atau pekerjaan alternatif dari pekerjaan yang akan dilakukan *value engineering*. Adapun parameter pertimbangan yang ditentukan sebagai berikut:

- 1. Memiliki biaya investasi yang lebih rendah
- 2. Memiliki kualitas dan fungsi material yang sama

- 3. Kemudahan metode kerja dan ketersediaan di pasaran
- 4. Waktu pelaksanaan yang efisien
- 5. Alternatif pekerjaan tersedia dalam lingkup kontrak awal

Pencarian alternatif pekerjaan sebisa mungkin terdapat pada lingkup kontrak awal dikarenakan penilitian ini mengambil sudut pandang kontraktor pelaksana, apabila alternatif pekerjaan tidak terdapat dalam kontrak awal maka akan menimbulkan tahapan pekerjaan seperti penawaran harga pekerjaan tambah serta justifikasi pekerjaan tambah. Oleh karena itu alternatif pekerjaan dapat dilihat pada Tabel 9 dan Tabel 10.

Tabel 9. Alterntaif Pekerjaan Pelapis Lantai

		Lai	ntai HT 120x	120	
Alternatif Pekerjaan	Biaya	Mutu & Fungsi	Metode	Waktu	Terdapat di Kontrak
HT 60x60			~		
Keramik 30x30					

Tabel 10. Alterntaif Pekerjaan Plafon Metal

		Metal C	eiling / Hollo	w Metal	
Alternatif Pekerjaan	Biaya	Mutu & Fungsi	Metode	Waktu	Terdapat di Kontrak
Gypsum					/
Calsiboard	~	~	/	~	_

Fase Evaluasi

Setelah didapatkan alternatif pekerjaan yang akan dilakukan analisa *value engineering*, kemudian dilanjutkan evaluasi keuntungan dan kerugian pada masing-masing alternatif pekerjaan tersebut. Untuk hasil evaluasi keuntungan dan kerugian dapat dilihat pada Tabel 11 sampai Tabel 16.

Tabel 11. Hasil Evaluasi Pekerjaan HT 60x60

Desain Lanta	ai HT 60x60
Keuntungan	Kerugian
Material lebih kuat, tidak mudah pecah serta	Harga dipasaran relatif lebih mahal
lebih presisi dibandingkan keramik.	dibandingkan keramik.
Perawatan mudah menggunakan air dan	Ukuran 60x60 cm tidak semewah
cairan pembersih lantai, mudah dibersihkan	apabila menggunakan ukuran yang lebih
dari debu.	besar.
Nat yang lebih kecil sehingga membuat	
tampilan terkesan lebih mewah.	
Pilihan motif yang tersedia beragam dan	
menyerupai granit/marmer asli.	

Tabel 12. Hasil Evaluasi Pekerjaan Keramik 30x30

Dagain	Lantai Keramik 30x30
Desain	
Keuntungan	Kerugian
Mudah dijumpai dipasaran dan	Lebih mudah retak atau pecah dibandingkan
mempunyai pilihan motif dan	
kualitas yang beragam.	
Perawatan mudah menggunakan air	Nat antara keramik lebih lebar dari Nat HT
dan cairan pembersih lantai, mudah	sehingga pemasangan tidak serapi apabila
dibersihkan dari debu.	menggunakan HT.
Harga pasaran keramik relatif lebih	Pilihan motif keramik yang tidak semewah HT.
murah dari pada material HT.	, ,
	Produksi keramik yang relatif kurang presisi,
	pemasangan keramik kurang rapi dibandingkan
	dengan HT.

Tabel 13. Hasil Evaluasi Pekerjaan Plafon Gypsum

Desain Plafon Gypsum			
Keuntungan	Kerugian		
Harga dipasaran relatif lebih murah	Material lebih mudah retak dan patah.		
dibandingkan plafon metal atau metal ceiling.			
Mudah didapatkan dengan berbagai jenis merk	Material tidak tahan lembab dan air.		
yang tersedia dipasaran karena lebih umum	Tidak cocok dipergunakan pada area		
digunakan dalam pembangunan.	yang beresiko terkena air langsung.		
Plafon gypsum dapat dimodel bertingkat dan	Memiliki resiko pada pekerjaan		
mudah untuk di cat sehingga menambah	kompon yang bergelombang apabila		
estetika bangunan.	tenaga kerja tidak memiliki keahlian di		
	bidangnya.		
Perbaikan dan pemeliharaan plafon gypsum	<u> </u>		
lebih murah dan lebih mudah.			

Tabel 14. Hasil Evaluasi Pekerjaan Plafon Calsiboard

Desain Plafon Calsiboard				
Keuntungan	Kerugian			
Harga dipasaran relatif lebih murah	Sambungan kompon panel calsiboard			
dibandingkan plafon metal atau metal ceiling.	rawan terjadi retakan			
Mudah didapatkan dengan berbagai jenis merk				
dipasaran.				
Lebih tahan kelembaban dan air dibandingkan				
plafon gypsum.				

Pada fase evaluasi selain melakukan evaluasi keuntungan dan kerugian pada alternatif pekerjaan, dilakukan juga evaluasi pada biaya atau harga satuan masing-masing pekerjaan.

Tabel 15. Perbandingan Biaya Pekerjaan Lantai

	HT 120x120 cm	HT 60x60 cm	Keramik 30x30 cm
Nilai RAB	1.709.239.277	1.326.171.967	1.045.491.311
Nilai RAPT	1.338.528.977	1.038.871.484	819.093.235
Nilai RC	1.571.105.558	860.577.483	551.652.232

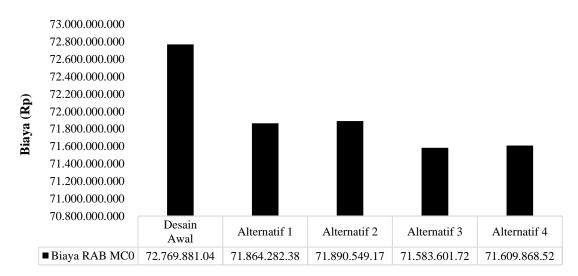
Tabel 16. Perbandingan Biaya Pekerjaan Plafon

	Hollow metal ceilling	Plafon gypsum 9mm	Plafon calsyboard
Nilai RAB	370.129.432	77.690.075	92.532.358
Nilai RAPT	289.888.339	52.179.901	72.472.085
Nilai RC	452.225.809	52.179.901	72.472.085

Hasil dari fase evaluasi selanjutnya dikembangkan di fase pengembangan.

Fase Pengembangan

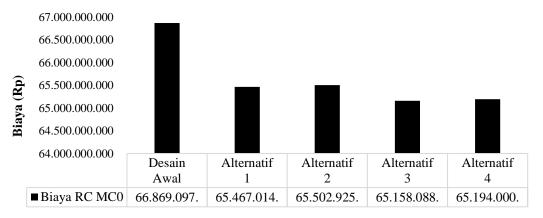
Pada fase pengembangan beberapa alternatif pekerjaan sebelumnya dikelompokan menjadi 4 kelompok alternatif yang nantinya akan dicari efisiensi biaya paling tinggi dengan nilai keuntungan fungsi paling baik. Pengelompokan alternatif pekerjaan tersebut dapat dilihat pada Tabel 17 pengelompokan alternatif pekerjaan.


Tabel 17. Pengelompokan Alternatif Pekerjaan

Alternatif 1	Alternatif 2	Alternatif 3	Alternatif 4
1. Pekerjaan	1. Pekerjaan	1. Pekerjaan	1. Pekerjaan Keramik
HT 60x60	HT 60x60	keramik 30x30	30x30
2. Pekerjaan Plafon	2. Pekerjaan Plafon	Pekerjaan	2. Pekerjaan Plafon
Gypsum	Calsiboard	Plafon Gypsum	Calsiboard

Pengembangan evaluasi biaya pada beberapa pengelompokan alternatif pekerjaan tersebut dibagi menjadi beberapa evaluasi yaitu evaluasi perbandingan nilai RAB, perbandingan nilai RC dan perbandingan selisih antara nilai RAB dengan nilai RC. Adapun hasil evaluasi nilai RAB dengan RC dapat dilihat pada Tabel 18 dan Tabel 19, serta pada Gambar 2 dan Gambar 3.

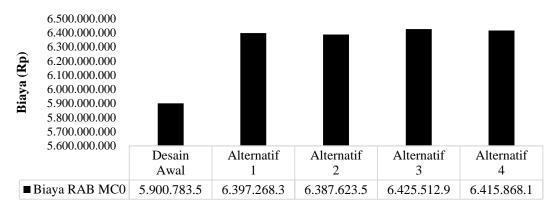
Tabel 18. Perbandingan biaya RAB


Nilai RAB dengan volume MC0				
Desain Awal Alt 1 Alt 2 Alt 3 Alt 4				
Rp 72.769.881.045 Rp 71.864.282.382 Rp 71.890.549.177 Rp 71.583.601.726 Rp 71.609.868.521				

Gambar 2. Grafik Perbandingan Biaya RAB MC0

Tabel 19. Perbandingan Biaya RC

Nilai RC dengan volume MC0				
Desain Awal Alt 1 Alt 2 Alt 3 Alt 4				
Rp 66.869.097.544	Rp 65.467.014.007	Rp 65.502.925.641	Rp 65.158.088.757	Rp 65.194.000.390



Gambar 3. Grafik Perbandingan Biaya RC MC0

Besaran efisiensi biaya kontraktor diketahui dengan cara mencari selisih antara nilai RAB dengan nilai RC. Hasil perbandingan selisih antara nilai RAB dengan nilai RC dapat dilihat pada Tabel 20 dan Gambar 4.

Tabel 20. Selisih Nilai RAB dengan RC

Biaya dengan volume RAB MC0				
Desain Awal Alt 1 Alt 2 Alt 3 Alt 4				Alt 4
Rp 5.900.783.501 Rp 6.397.268.375 Rp 6.387.623.537 Rp 6.425.512.970 Rp 6.415.868.131				

Gambar 4. Grafik Selisih Nilai RAB dengan RC

Melihat hasil perbadingan pada Tabel 20 dan Gambar 4 didapat nilai efisiensi paling besar terdapat pada desain alternatif 3, selanjutnya dari hasil evaluasi diatas akan dibandingkan dengan besaran nilai biaya awal kontrak sehingga didapat besaran peningkatan nilai efisiensinya.

Tabel 21. Perbandingan Efisiensi Total Biaya Alternatif 3

Biaya	RAB Awal	RAB MC0	RAB MC0
			Alt 3
Nilai	71.619.398.916	72.769.881.045	71.583.601.726
Selisih		-1.150.482.129	35.797.189
		-1,61%	0,05%

Tabel 22. Perbandingan Efisiensi Total Biaya Alternatif 3

Biaya	Desain RAB Awal	Desain RAB MC0	Desain RAB MC0
			Alt 3
RAB	71.619.398.916	72.769.881.045	71.583.601.726
RC	66.722.543.875	66.869.097.544	65.158.088.757
Selisih	4.896.855.041	5.900.783.501	6.425.512.970
Persentasi	6,84%	8,11%	8,98%
Selisih		1,27%	2,14%

Fase Rekomendasi

Berdasarkan hasil evaluasi dari fasefase sebelumnya, pada fase rekomendasi dapat yang direkomendasikan adalah alternatif desain 3 yang memiliki efisiensi biaya terbesar dengan peningkatan efisiensi biaya untuk kontraktor sebesar Rp Rp 1.528.657.929,atau 2,14% dibandingkan desain awal. Sedangkan untuk pemilik proyek memberikan

efisiensi biaya sebesar Rp 1.150.482.129,- atau 1,61% serta memberikan nilai tambah sebesar Rp 35.797.189,- atau 0,05%.

SIMPULAN

Berdasarkan 4 alternatif desain yang disajikan tingkat efisiensi biaya terbesar terdapat pada alternatif desain 3 dengan perubahan pada pekerjaan lantai HT 120x120 cm menjadi lantai

keramik 30x30 cm serta plafon metal menjadi plafon gypsum 9mm. Peningkatan nilai efisiensi sebesar Rp 1.528.657.929,- atau 2,14% dibandingkan desain awal.

Alternatif desain 3 memiliki nilai tambah tertinggi dari 4 desain yang tersedia bagi Pemilik Proyek yaitu dengan memberikan efisiensi biaya sebesar Rp 1.150.482.129,- atau 1,61% serta memberikan nilai tambah sebesar Rp 35.797.189,- atau 0,05% dan tetap dapat mempertahankan fungsi desain awal.

DAFTAR PUSTAKA

- Albertus, S., Miftahul, H., Siswoyo, 2020, Penerapan Value Engineering pada Proyek Pembangunan Puskesmas Rego Manggarai Barat NTT. Surayaba: Jurnal Rekasaya dan Manajemen Konstruksi.
- Candra, P., 1987, Project Preparation, Appraisal, Budgeting and Implementation. Tata McGraw-Hill Publishing Company Ltd.
- Dell'Isola, 1982, Value Engineering:

 Partical Application for Design

 Construction Maintenance &

 Operations. USA: Company,
 Inc.
- Dhanianto, S., 2021, Analisa Value
 Engineering Pada Proyek
 Pembangunan Pasar Glendoh
 Kabupaten Grobogan.
 Semarang: Universitas Islam
 Sultan Agung.
- Dimas, P., 2019, Aplikasi Value Engineering Untuk Optimalisasi

- Pembiayaan Pada Proyek Pembangunan Gedung Kuliah II UIN Suska Riau. Riau: Universitas Islam Riau Pekanbaru.
- Kasi, M., Snodgrass, & Thomas, J., 1994, Course guide for civil and environ-mental engineering C240-A362. An Introduction to Value Analysis and Value Engineering for Architects, Engineer and Builders.
- Kelly, J., & Male., 2004, Value Management of Construkction Project. London.
- Khalim., dkk., 2021, *Analisis Contract Change Order* pada Pelaksanaan

 Proyek Apartemen Alton

 Semarang. Semarang: Wahana

 Teknik Sipil Politeknik Negeri

 Semarang.
- Kormomolin, dkk., 2020, Penerapan Value Engineering pada Pembangunan Lahan Parkir Fakultas Teknik Universitas Pattimura. Ambon: Jurnal Simetrik.
- Rizki, Putra., dkk., 2022, Anlisis
 Faktor Penyebab Pekerjaan
 Tambah Kurang bagi Penyedia
 Jasa Konstruksi Pekanbaru.
 Pekanbaru: Prosiding SENKIM:
 Seminar Nasional Karya Ilmiah
 Multidisiplin.
- SAVE, S.I., 2007, 2007 edition, Value Standard and Body Knowledge.
- Younker, D., 2003, Value

 Engineering: Analysis And

 Methodology. CRC Press.