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Abstract 

 

Deep learning-based automated visual inspection has become increasingly important for reducing the subjectivity and 

mistakes that come with manual inspection.  However, when the image dataset is small, Convolutional Neural Networks 

(CNN) often do not perform optimally because the model overfits and fails to generalize effectivelyl. This study 

investigates the effect of data augmentation on enhancing the performance of an AlexNet-based CNN model for 

classifying defect and non-defect casting images.  There were 13266 grayscale images in total, and they were divided 

into two groups: defect and non-defect.  To increase data variability, several augmentation techniques were used, such 

as rotation, flipping, zooming, and brightness adjustment.  We evaluated two different training scenarios: training a 

model without adding anything and training a model with adding something.  We used accuracy, precision, recall, F1-

score, validation loss, and confusion matrix analysis to evaluate model perfomance.  The findings demonstrate that 

data augmentation significantly improves model performance. The validation loss decreased from 0.019747 to 

0.014853, and the accuracy, precision, recall, and F1-score all showed slight improvements. The enhanced model also 

achieved higher true positive and true negative values, signifying improved recognition proficiency. Tests on 

previously unseen samples yielded 100% correct predictions, indicating enhanced generalization.  To sum up, data 

augmentation is an effective strategy for mitigating small datset limitations and improving the reliability of CNN-based 

visual inspection systems in industrial environments. 
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Abstract  

 

Inspeksi visual otomatis berbasis deep learning menjadi semakin penting untuk mengurangi subjektivitas dan 

kesalahan yang muncul akibat inspeksi manual. Namun, ketika dataset gambar kecil, Jaringan Saraf Konvolusional 

(CNN) seringkali tidak berfungsi dengan baik karena modelnya terlalu pas dan tidak tergeneralisasi dengan baik. Studi 

ini mengkaji dampak augmentasi data dalam meningkatkan kinerja model CNN berbasis AlexNet untuk 

mengklasifikasikan gambar casting cacat dan non-cacat. Total terdapat 13266 gambar grayscale, dan dibagi menjadi 

dua kelompok: cacat dan non-cacat. Untuk membuat data lebih bervariasi, beberapa teknik augmentasi digunakan, 

seperti rotasi, pembalikan, pembesaran, dan perubahan kecerahan. Kami mengamati dua situasi berbeda: melatih model 

tanpa menambahkan apa pun dan melatih model dengan menambahkan sesuatu. Kami menggunakan analisis akurasi, 

presisi, recall, skor F1, kerugian validasi, dan matriks kebingungan untuk melihat seberapa baik kinerja model. Temuan 

menunjukkan bahwa augmentasi data secara substansial meningkatkan kinerja model. Kerugian validasi turun dari 

0.019747 menjadi 0.014853, sementara akurasi, presisi, recall, dan skor F1 sedikit meningkat. Model yang 

disempurnakan juga menghasilkan nilai positif benar dan negatif benar yang superior, menandakan peningkatan 

kemampuan pengenalan. Pengujian pada sampel baru yang belum pernah dilihat sebelumnya menghasilkan prediksi 

yang 100% akurat, yang menunjukkan bahwa generalisasi telah menjadi lebih baik. Singkatnya, augmentasi data 

adalah cara yang terbukti untuk mengatasi kumpulan data kecil dan membuat sistem inspeksi visual berbasis CNN 

lebih andal di pabrik. 

 

Keywords: AlexNet; data augmentation; deep learning; visual inspection; defect classification. 

 

1. Introduction 

In the manufacturing industry, product quality largely determines commercial value and operational reliability. The 

visual inspection process that is carried out manually still faces various challenges such as subjectivity, inconsistencies, 
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and the risk of human error. This is in line with the statement [1] that the manual visual inspection process on industrial 

products is prone to errors and requires high costs. 

Therefore, deep learning-based inspection systems are increasingly used because they are able to extract visual 

patterns automatically and provide more consistent results than manual inspections. 

However, the effectiveness of deep learning models is greatly influenced by the amount and variety of data used 

during training. In many applications in manufacturing environments, flawed imagery datasets are generally very limited.  

[1] notes that "the average size of the industrial inspection dataset is only about 2,500 samples, so deep learning models 

cannot be optimally trained from scratch." The findings are supported by [2] the assertion that flaw detection datasets in 

manufacturing often experience "data scarcity, class imbalances, and data distribution shifts". 

This condition causes the model to be easily overfitting, which is a state when the model is over-adjusting to the 

training data but fails to generalize to the new data. Therefore, strategies are needed to increase the variety and 

representation of data used during training. 

One of the widely used solutions is data augmentation, which is the process of multiplying training data through 

transformations such as rotation, flipping, zooming, and changes in light intensity. This technique has been proven to 

significantly improve model performance. [3] showed that GAN-based augmentation on surface defect detection could 

increase model sensitivity to 95.33% and specificity to 99.16%. In addition, [4] it emphasized that the scarcity of data 

and small defect sizes in industrial products are the main reasons why augmentation techniques are urgently needed to 

improve model performance. 

Based on this background, this study focuses on the analysis of how augmented data affects the accuracy and stability 

of Convolutional Neural Network (CNN) models in the classification of manufacturing images, with the aim of improving 

the generalization capabilities of models under complex and varied industrial conditions. 

 

2. Material and Method 

2.1. Research Design 

This study was conducted to analyze the effect of the application of data augmentation techniques on the accuracy 

and stability of the Convolutional Neural Network (CNN) model in classifying casting product images between defect 

and non-defect categories. This approach is in line with recent research confirming that data augmentation is an important 

step towards improving model generalization on a limited industrial dataset [5], [6]. 

The research design was a quantitative experiment, in which two model training scenarios were performed: a model 

without augmentation (baseline model) and a model with image augmentation uses various transformations (rotation, 

flipping, zooming, and changes in light intensity). This basic augmentation technique is commonly used in modern visual 

inspection because it has been proven to effectively expand the variety of datasets [7], [8]. 

 

2.2. Dataset Data and Sources 

The dataset used consists of 13266 grayscale images (originally sourced from RGB images), classified into two 

classes: defect and non-defect as a result of metal casting product documentation obtained from local industry databases 

and open sources (public manufacturing defect dataset). The challenge of data imbalance and limited visual variation in 

industrial datasets are the main reasons for the need for augmentation, as conveyed in a recent study on CNN-based defect 

inspection [9], [10]. 
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Imagery is classified into two main categories: defect, consisting of 7516 images showing porosity, cracks, or other 

surface defects, and non-defect, consisting of 5750 images with normal surface conditions without any anomalies. The 

entire image had an original size of 300x300 pixels, then changed to 227×227 pixels to match the input size of the CNN 

model used.  

The dataset in this study has a class imbalance, with a proportion of 7516 def_front images and 5750 ok_front images. 

Although the level of imbalance is not extreme, this condition still has the potential to affect the model's sensitivity to the 

minority class. To minimize this bias, several strategies were implemented during the training process. First, class 

weighting was used on the loss function so that errors in the minority class received a larger penalty. Second, augmentation 

was performed proportionally on both classes, not only the def_front class, thereby increasing intra-class variation without 

altering the distribution ratio between classes. This ensures that the augmented dataset maintains consistent representation 

and does not exacerbate the original imbalance. 

This balanced augmentation approach also provides the additional benefit of increased visual diversity, encompassing 

variations in texture, lighting intensity, orientation, and surface conditions. Thus, the model gains better generalization 

ability without artificially modifying the class distribution structure. Additionally, the F1-score is used as the primary 

evaluation metric because it provides a more stable assessment on imbalanced datasets by balancing the influence of false 

positives and false negatives. A sample of the dataset is shown in Figure 1, where Figure 1(a) illustrates a defect image 

containing visible surface anomalies such as porosity or cracks, and Figure 1(b) presents a non-defect image with normal 

and uniform surface conditions. 

  
(a) (b) 

Figure 1. Sample (a) def_front and (b) ok_front casting 

images in grayscale format as used for model input 

 

2.3. Split Data 

Table 1 summarizes the data splitting scheme used in this study. The dataset consisted of 6633 images before 

augmentation and 13266 images after augmentation. For both conditions, 80% of the data was allocated for training and 

20% for validation to ensure effective CNN model training and performance evaluation. 

 

Table 1. Data Splitting 

Factors Data Splitting Percentage Total Image (before data 

augmentation) 

Total Image (after data 

augmentation) 

Train 80% 5306 10613 

Validation 20% 1327 2652 

Total 100% 6633 13266 
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2.4. Preprocessing Data 

Before the training process, the following pre-processing stages are carried out including normalize color and contrast 

to adjust the lighting level between images, resizing the image to 227×227 pixels, performing utomatic labeling based on 

file name and initial classification, and splitting the dataset with a proportion of 80% for training data and 20% for 

validation data. The purpose of this preprocessing is to reduce visual noise [11], standardize image size, and ensure a 

balanced distribution of data between classes. All RGB images were converted to grayscale (single-channel) to reduce 

computational complexity and focus on textural and structural features essential for detecting casting defects such as 

porosity and cracks. 

 

2.5. Data Augmentation Techniques 

The augmentation techniques used include rotation, horizontal/vertical flipping, zoom range, and brightness 

adjustment. The selection of this technique is supported by findings [12] showing that geometric and photometric 

augmentation directly improve CNN's ability to classify surface defects in industrial processes. In addition, the study [5] 

introduced the concept of structured augmentation (PreAugNet) to overcome the limitations of industrial datasets, which 

strengthens the basis for the use of augmentation in this study. Augmentation is also in line with the method discussed by 

[13], which emphasizes that increasing intra-class variation through visual transformation can reduce overfitting on 

defective datasets with limited distribution. 

In this research, offline augmentation was applied prior to model training, where each original image in the training 

set was transformed into two augmented images using randomly selected parameter values. As a result, the def_front 

class increased from 3758 to 7516 images, and the ok_front class increased proportionally, expanding the overall dataset 

from 6633 to 13266 images. 

The augmentation parameters used in this process are summarized in Table 2. Rotation, flipping (horizontal and 

vertical), zoom, and brightness adjustment were applied randomly and could occur simultaneously within a single 

augmentation step. Thus, an image could be rotated, flipped, and brightness-adjusted at once, enhancing visual diversity 

without merely duplicating the dataset. 

 

Table 2. Augmentation Data Parameters 

Types of Augmentation 
 

Parameter 
 

Purpose 
 

Rotation - 30° to 30° Mimicking camera angle variations 

Horizontal Flip Probability 0.5 Adding object orientation 

Vertical Flip Probability 0.5 Increase the diversity of vertical symmetry 

Zoom Range 0.9 – 1.1 Simulate camera distance differences 

Brightness Adjustment ±25% Mimicking different lighting conditions 

 

2.5.1  Resize 

Resize is a linear transformation used to uniformly scale an image in both directions by applying scale factors  𝑺𝑿 and 

𝑺𝒀. The transformation matrix used for the resizing process is shown in Eq. (1). 

[
𝐒𝐗 𝟎 𝟎
𝟎 𝐒𝐘 𝟎
𝟎 𝟎 𝟏

] (1) 
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2.5.2  Image Rotation 

Image rotation is performed by applying a rotational transformation around a reference point using a rotation angle 𝜽. 

The corresponding rotation matrix is presented in Eq. (2) 

[
𝐜𝐨𝐬 𝜽 𝐬𝐢𝐧 𝜽 𝟎
𝐬𝐢𝐧 𝜽 𝐜𝐨𝐬 𝜽 𝟎

𝟎 𝟎 𝟏
] (2) 

 

2.5.3  Flip 

Flip transformation is used to perform horizontal and vertical reflections on an image. The matrices for horizontal and 

vertical flips are respectively given in Eq. (3) and Eq. (4). 

𝐇𝐨𝐫𝐢𝐳𝐨𝐧𝐭𝐚𝐥 = [
−𝟏 𝟎 𝐰𝐢𝐝𝐭𝐡 
𝟎 𝟏 𝟎
𝟎 𝟎 𝟏

] (3) 

𝐕𝐞𝐫𝐭𝐢𝐤𝐚𝐥     = [
𝟏 𝟎 𝟎
𝟎 −𝟏 𝐡𝐞𝐢𝐠𝐡𝐭
𝟎 𝟎 𝟏

] (4) 

 

Each image in the training dataset was augmented using random combinations of these transformations, resulting in 

an effective data volume increase of more than twice the original size. Table 3 presents examples of preprocessing results 

generated using Eqs. (1)–(4). 

Table 3. Preprocessing Results (shown in grayscale representation) 

Prepocessing Input Output 

Resize 

 

300 x 300 

 

227 x 227 

 

Image Rotation 

  

Flip 

  

Horizontal 

  

Vertical 

 

2.6. CNN Model Architecture 

The Convolutional Neural Network (CNN) architecture adopted in this study is AlexNet, which processes input 

images of 227 × 227 × 3 and consists of five convolutional layers followed by three fully connected layers, totaling 
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approximately 60 million parameters. The choice of AlexNet is motivated by its balance between accuracy, computational 

efficiency, and architectural simplicity, which makes it suitable for industrial visual inspection scenarios where datasets 

are typically small to medium in scale and hardware resources are often limited. Although more recent architectures such 

as ResNet, DenseNet, MobileNet, and EfficientNet offer improved accuracy through deeper or more optimized feature 

hierarchies, they generally require substantially higher computational power and tend to overfit when trained on limited 

datasets [1], [14]. For casting defect imagery, most discriminative characteristics such as porosity, cracks, surface 

irregularities, and low-to-mid–level textural variations can be effectively captured by AlexNet’s early convolutional 

layers. These layers have been shown to extract strong edge, blob, and texture-level representations without necessitating 

very deep networks [15]. Previous studies have demonstrated that AlexNet can achieve competitive performance in 

industrial defect detection tasks. For example, the work of Zhao and Wu [16] reported that AlexNet performed comparably 

to deeper architectures on casting defect classification, differing by less than 1% from ResNet-50. Similar findings in [17] 

indicate that AlexNet maintains stable performance in data-constrained environments, often outperforming deeper models 

when training samples are limited. 

AlexNet also remains widely used in industrial applications due to its reproducibility, robustness, and relatively low 

inference latency, which are essential for real-time inspection settings and deployment on edge devices [9], [18]. These 

characteristics align with the operational constraints of industrial manufacturing, where rapid decision-making and 

computational efficiency are required. The overall architecture as implemented in this study is illustrated in Figure 2, and 

the details of the layer configuration are summarized in Table 4. 

.  

Figure 2. AlexNet Architecture 

Table 4. AlexNet Layer Structure 

No. Layer Type Kernel Size Stride / Padding Output Size Activation Function 

1 Convolutional Layer 1 96 filter, 11×11 Stride 4 55×55×96 ReLU + MaxPooling 

(3×3, stride 2) 

2 Convolutional Layer 2 256 filter, 5×5 Stride 1, padding 2 27×27×256 ReLU + MaxPooling 

(3×3, stride 2) 

3 Convolutional Layer 3 384 filter, 3×3 Stride 1, padding 1 13×13×384 ReLU 

4 Convolutional Layer 4 384 filter, 3×3 Stride 1, padding 1 13×13×384 ReLU 

5 Convolutional Layer 5 256 filter, 3×3 Stride 1, padding 1 13×13×256 ReLU + MaxPooling 

(3×3, stride 2) 

6 Fully Connected Layer 1 4096 neuron - 1×1×4096 ReLU + Dropout(0.5) 

7 Fully Connected Layer 2 4096 neuron - 1×1×4096 ReLU + Dropout(0.5) 

8 Fully Connected Layer 3 

(Output) 

2 neuron (defect 

& non-defect) 

- 1×1×2 Softmax 

The selection of this architecture is based on AlexNet's effectiveness in recognizing complex spatial patterns and 

their stability to changes in lighting [19]. 
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2.7. Model Performance Evaluation 

In this study, the performance of the CNN model was evaluated using several quantitative metrics commonly applied 

in image classification tasks, namely Accuracy, Precision, Recall, F1-Score, and Validation Loss. All metrics were 

calculated based on the confusion matrix, which consists of four elements: True Positive (TP), representing the number 

of defective images correctly identified as defective; True Negative (TN), representing non-defective images correctly 

recognized as non-defective; False Positive (FP), referring to non-defective images misclassified as defective; and False 

Negative (FN), referring to defective images incorrectly classified as non-defective. 

2.7.1  Accuracy 

Accuracy measures the proportion of correct predictions relative to the total number of evaluated samples, as defined 

in Eq. (5): 

𝐀𝐜𝐜𝐮𝐫𝐚𝐜𝐲 =
𝐓𝐏 + 𝐓𝐍

𝐓𝐏 + 𝐓𝐍 + 𝐅𝐏 + 𝐅𝐍
 (5) 

 

2.7.2  Recall (Sensitivitas) 

Recall (also referred to as sensitivity) measures the model’s ability to correctly identify all positive samples. A higher 

recall indicates fewer missed defective samples (low FN). The formulation is shown in Eq. (6): 

𝐑𝐞𝐜𝐚𝐥𝐥 =
𝐓𝐏

𝐓𝐏 + 𝐅𝐍
 (6) 

 

2.7.3  Precission 

Precision quantifies the proportion of predicted positive samples that are truly positive, and a high value indicates a 

low rate of false alarms (low FP). The metric is defined in Eq. (7): 

𝐏𝐫𝐞𝐜𝐢𝐬𝐬𝐢𝐨𝐧 =
𝐓𝐏

𝐓𝐏 + 𝐅𝐏
 (7) 

 

2.7.4  F1 Score 

The F1-Score represents the harmonic mean between Precision and Recall and is particularly suitable when dealing 

with imbalanced datasets. Its calculation is presented in Eq. (8): 

𝐅𝟏 𝐒𝐜𝐨𝐫𝐞 =
𝟐 𝐱 𝐑𝐞𝐜𝐚𝐥𝐥 𝐱 𝐏𝐫𝐞𝐜𝐢𝐬𝐬𝐢𝐨𝐧

𝐑𝐞𝐜𝐚𝐥𝐥 +  𝐏𝐫𝐞𝐜𝐢𝐬𝐬𝐢𝐨𝐧
 (8) 

 

2.7.5  Validation Loss 

Validation Loss quantifies the prediction error on the validation set at each epoch. For binary classification, the loss 

function employed is Binary Cross-Entropy, as expressed in Eq. (9): 

𝑳 = − 
𝟏

𝑵
∑[𝒚𝒊 . 𝐥𝐨𝐠(𝒚𝒊̂) + (𝟏 + 𝒚𝒊) . 𝐥𝐨𝐠(𝟏 + 𝒚𝒊̂)]

𝑵

𝒊=𝟏

 (9) 

where 𝒚𝒊 notes the actual class label (0 or 1), 𝒚̂𝒊 is the predicted probability, and 𝑵 is the total number of samples. 

 

3. Results and Discussion 

The results of the Convolutional Neural Network (CNN) model training in two scenarios, namely before and after 

data augmentation, showed a significant increase in performance after the application of the augmentation technique. The 
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initial dataset of 6.633 images was expanded to 13.266 images through an augmentation process with various 

transformations such as rotation, flipping, zoom, and brightness adjustment. 

 

3.1. Results Before Data Augmentation 

In the non-augmented training scenario, the model achieved a Validation Loss of 0.019747, Validation Accuracy of 

99.55%, Average Precision of 0.99501, Average Recall of 0.99581, and an Average F1-Score of 0.9954, computed using 

Eq. (5)–(9). These results indicate good pattern recognition ability; however, the relatively higher Validation Loss (Eq. 

9) compared to the augmented scenario suggests overfitting, as the model becomes too fitted to the limited training data 

and exhibits reduced generalization capability.  

 

3.2. Results After Data Augmentation 

After augmentation, the dataset size doubled and the model achieved improved performance, yielding a Validation 

Loss of 0.014853, Validation Accuracy of 99.62%, Average Precision of 0.99569, Average Recall of 0.99667, and an 

Average F1-Score of 0.99617, calculated using Eq. (5)–(9). The 24.77% reduction in Validation Loss (Eq. 9) indicates a 

lower error rate and improved model stability. The increases in Accuracy, Precision, Recall, and F1-Score demonstrate 

that the augmented data enabled the model to learn more diverse visual features, resulting in enhanced robustness to 

variations in illumination, orientation, and surface characteristics. These findings align with prior studies [6], [20], which 

reported that data augmentation particularly GAN-based significantly enhances generalization by increasing intra-class 

variability. 

 

3.3. Model Performance Comparison Analysis 

Based on Table 5, all performance parameters improved, with a notable reduction in validation loss, indicating 

enhanced model stability on the validation set. Although the numerical increase in accuracy (0.0703164%) appears small, 

such an improvement is significant in deep learning based visual inspection, as even marginal gains can substantially 

reduce misclassifications in large-scale industrial production. 

Table 5. Comparison of the results of the two scenarios 

Parameter Before Augmentation After Augmentation Change 

Validation Loss 0.019747 0.014853 ↓ 24.77 % 

Validation Accuracy (%) 99.55 99.62 ↑ 0.0703164 % 

Average Precision 0.99501 0.99569 ↑ 0.068341 % 

Average Recall 0.99581 0.99667 ↑ 0.086362 % 

Average F1-Score 0.9954 0.99617 ↑ 0.077356 % 

 

The improvement in the performance of the CNN model after augmentation is in line with the findings of several 

recent studies. The research in its systematic review states that more than 59% of flaw detection studies use data 

augmentation as a primary strategy to improve model generalization. Later [10] in his research it was also shown that 

augmentation under reflective lighting conditions can improve the resistance of the model to variations in the industrial 

environment. In addition, [21] it was found that the application of data enhancement techniques in steel surface inspection 

was able to increase the sensitivity of the model to microdefects without causing overfitting. 
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3.4. Confusion Matrix Analysis 

Figure 3(a) Confusion matrix before data augmentation shows TP for def_front = 747, FN = 5, FP = 1, and TN for 

ok_front = 574. After augmentation, Figure 3(b) shows an increase to 1493 TP and 1150 TN, with FN = 10 and FP = 1. 

The rise in TP and TN is consistent with the expanded dataset size. 

  

(a) (b) 

Figure 3. (a) Confusion matrix before data augmentation and (b) Confusion matrix after data augmentation 

 

Based on the confusion matrix results shown in Figure 3(a)  and Figure 3(b), the analysis indicates that the increase 

in TP (from 747 to 1493) and TN (from 574 to 1150) after augmentation demonstrates that the model became more 

capable of recognizing both defective and non-defective images when exposed to greater visual variability. The FP value 

remained very low (1 in both cases), confirming that augmentation did not introduce additional false alarms that could 

negatively affect the inspection process. Although the absolute FN value increased slightly (from 5 to 10), the proportion 

of FN relative to the total validation samples remained unchanged. The FN rate before augmentation, as calculated in Eq. 

(10), was: 

FN rate before augmentation = 
𝟓

𝟏𝟑𝟐𝟕 
𝒙 𝟏𝟎𝟎% = 𝟎. 𝟑𝟕𝟕%                   (10) 

Similarly, the FN rate after augmentation, shown in Eq. (11), was: 

FN rate after augmentation = 
𝟓

𝟐𝟔𝟓𝟐 
𝒙 𝟏𝟎𝟎% = 𝟎. 𝟑𝟕𝟕%                   (11) 

The equality of FN percentages (0.377% in both cases) confirms that the augmentation process did not increase the relative 

risk of misclassifying defective samples. 

3.5. Analysis of Predicted Results on New Data Samples (After Data Augmentation) 

As illustrated in Figure 4, six sample images representing the two primary classes—def_front and ok_front—were 

evaluated using new data that the model had not encountered during training. The results in Figure 4(a) show the model’s 

prediction outputs for the new grayscale images, while Figure 4(b) provides a detailed classification analysis for each 

class. All samples were classified with 100% accuracy, demonstrating that the model was able to generalize effectively 

to unseen data for both defect and non-defect categories. 
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3.5.1 Class def_front (Surface defects) 

The first three images show objects with different deformed patterns in terms of crack shape, rough texture, and 

variations in surface imperfections. The model gives a prediction of def_front (100%), indicating that it is able to 

recognize essential defective features even on the new image. This also demonstrates that the model does not merely 

memorizes patterns from the training data, but is capable of strongly generalizing the defect patterns. The use of 

augmentation (rotation, lighting changes, flipping, zoom) successfully makes the model resilient to new image variations. 

These findings are in line with research [6] confirming that intra-class augmentation improves the model's ability to 

recognize various forms of defects in different objects. 

  

(a) (b) 

Figure 4.  (a) Prediction results with new grayscale data, (b) Detailed analysis of each class 

 

3.5.2 Class ok_front (Non-disabled) 

The three images in the second row show the surface of the object that is flat, reflective, and without visual anomalies. 

The model predicts ok_front (100%), indicating that it can accurately distinguish normal textures from defective textures 

with precision. Augmentation also enhances the model’s sensitivity in recognizing the absence of defects, which is crucial 

for achieving high true negative rates. Moreover, no false positives (FP) appear in the new data, showing that non-

defective features are stably recognized. These results supports the findings of the study [9] that augmentation helps 

improve specificity, i.e. the model's ability to recognize normal classes consistently. 

 

3.5.3  Evaluation of Model Generalization. 

The 100% prediction success of the new data shows that the model has excellent generalization capabilities. This is 

supported by the low validation loss (0.014853), precision, recall, and F1-score above 0.996, as well as the he confusion 

matrix after augmentation showed that FP and FN were very minimal. The model shows no signs  of overfitting, as it 

continues to perform highly accurately on previously unseen data. Augmentation is proven to help models recognize 

variations in lighting, orientation, object position, surface characteristics, and visual noise in industrial production. These 

results is in line with research [10], which states that photometric and geometric augmentation increase robustness to 

dynamic factory environmental conditions. 
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3.5.4 Comparison with Manual Visual Inspection from Literature 

Manual visual inspection has traditionally been used in industrial quality control, especially in casting processes where 

defects such as porosity, cracks, and surface irregularities must be detected. However, its reliability is limited by human 

factors including experience, fatigue, lighting, and subjective judgment. Prior studies consistently report variability, 

reduced sensitivity to subtle defects, and inconsistent decisions across operators, highlighting the need for automated 

inspection methods. 

To position the performance of the proposed CNN model within this context, its results were compared with several 

Scopus-indexed studies on manual visual inspection. The comparison focuses on accuracy, precision, human error 

tendencies, and robustness to defect variability. Table 6 presents a summary of these differences. 

Table 6. Comparison of Manual Visual Inspection (Literature) and CNN Model (This Study) 

Literature 
Manual Inspection 

Performance 

Reported Limitations of 

Manual Inspection 

CNN + Augmentation 

Performance (This Study) 

[22] Accuracy = 97%, Precision = 

92.4% 

Decisions affected by lighting, 

subjectivity, and inspector 

variability 

Accuracy 99.62%, Precision 

0.99569, Recall 0.99667, F1 

0.99617 

[23] Low repeatability; inconsistent 

inspector decisions 

Caused by fatigue, perception 

bias, inconsistent inspection 

protocols 

TP & TN nearly doubled after 

augmentation, stable results 

[24] Typical manual accuracy 

ranges 85 - 97% 

Unsuitable for high-volume 

production; error increases with 

fatigue 

Strong generalization: 100% 

correct predictions on new 

samples 

[25] Human accuracy decreases for 

low-contrast or micro defects 

Visual detection threshold limits 

human performance 

CNN robust to subtle defects 

through augmentation 

[26] Accuracy influenced by 

ergonomics & inspector 

psychology 

Fatigue, reduced attention, 

inconsistent judgments 

CNN stable, unaffected by 

external conditions 

 

The literature consistently indicates that manual visual inspection is limited by human cognitive and environmental 

variability, resulting in false detections, missed micro-defects, and inconsistent operator decisions. In contrast, the CNN 

model with data augmentation in this study achieved higher accuracy, precision, and recall, with error rates notably lower 

than those reported for manual inspection. The model also demonstrated strong generalization on unseen samples. These 

results highlight the advantages of deep learning–based inspection over traditional manual methods in industrial 

environments that require high consistency, rapid processing, and minimal error tolerance. Overall, the comparison 

confirms that CNN-based automated inspection provides superior accuracy and stability, making it suitable for modern 

quality control in foundry applications. 

 

4. Conclusion 

Based on the analysis conducted in this study, it can be concluded that the application of data augmentation techniques 

(such as rotation, flipping, zoom, and brightness adjustment) significantly improved the performance and generalization 
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capabilities of AlexNet's Convolutional Neural Network (CNN) model in the task of defect classification on casting 

product images. 

Data augmentation effectively reduced overfitting, as indicated decrease in the value of the Validation Loss by 24.77% 

(from 0.019747 to 0.014853). This indicates the model becomes more stable and has lower errors when faced with 

validation data that has never been seen before. 

Compared with findings from the existing literature on manual visual inspection, the CNN model in this study clearly 

outperforms human-based inspection methods, which are often limited by subjectivity, fatigue, lighting conditions, and 

inconsistent decision-making. While manual inspection typically yields accuracy values ranging between 85% and 97%, 

the augmented CNN model demonstrated significantly higher accuracy, precision, and recall, unaffected by 

environmental or cognitive limitations. 

The Confusion matrix analysis proved that the augmented model had a better ability to identify both classes (True 

Positive and True Negative increased almost twofold), without causing an increase in false alarms (False Positives 

remained low). In addition, models trained on augmented data show excellent generalization ability when tested on new 

data samples, successfully predicting all samples accurately (100%). This proves the model's toughness to visual 

variations such as differences in lighting, angles, and textures encountered in real industrial conditions. 

Overall, the study confirms that data augmentation is a simple but highly effective strategy and is important to 

overcome data limitations and improve the reliability of deep learning-based visual inspection systems in manufacturing 

environments. 
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