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Abstract

Deep learning-based automated visual inspection has become increasingly important for reducing the subjectivity and
mistakes that come with manual inspection. However, when the image dataset is small, Convolutional Neural Networks
(CNN) often do not perform optimally because the model overfits and fails to generalize effectivelyl. This study
investigates the effect of data augmentation on enhancing the performance of an AlexNet-based CNN model for
classifying defect and non-defect casting images. There were 13266 grayscale images in total, and they were divided
into two groups: defect and non-defect. To increase data variability, several augmentation techniques were used, such
as rotation, flipping, zooming, and brightness adjustment. We evaluated two different training scenarios: training a
model without adding anything and training a model with adding something. We used accuracy, precision, recall, F1-
score, validation loss, and confusion matrix analysis to evaluate model perfomance. The findings demonstrate that
data augmentation significantly improves model performance. The validation loss decreased from 0.019747 to
0.014853, and the accuracy, precision, recall, and F1-score all showed slight improvements. The enhanced model also
achieved higher true positive and true negative values, signifying improved recognition proficiency. Tests on
previously unseen samples yielded 100% correct predictions, indicating enhanced generalization. To sum up, data
augmentation is an effective strategy for mitigating small datset limitations and improving the reliability of CNN-based
visual inspection systems in industrial environments.
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Abstract

Inspeksi visual otomatis berbasis deep learning menjadi semakin penting untuk mengurangi subjektivitas dan
kesalahan yang muncul akibat inspeksi manual. Namun, ketika dataset gambar kecil, Jaringan Saraf Konvolusional
(CNN) seringkali tidak berfungsi dengan baik karena modelnya terlalu pas dan tidak tergeneralisasi dengan baik. Studi
ini mengkaji dampak augmentasi data dalam meningkatkan kinerja model CNN berbasis AlexNet untuk
mengklasifikasikan gambar casting cacat dan non-cacat. Total terdapat 13266 gambar grayscale, dan dibagi menjadi
dua kelompok: cacat dan non-cacat. Untuk membuat data lebih bervariasi, beberapa teknik augmentasi digunakan,
seperti rotasi, pembalikan, pembesaran, dan perubahan kecerahan. Kami mengamati dua situasi berbeda: melatih model
tanpa menambahkan apa pun dan melatih model dengan menambahkan sesuatu. Kami menggunakan analisis akurasi,
presisi, recall, skor F1, kerugian validasi, dan matriks kebingungan untuk melihat seberapa baik kinerja model. Temuan
menunjukkan bahwa augmentasi data secara substansial meningkatkan kinerja model. Kerugian validasi turun dari
0.019747 menjadi 0.014853, sementara akurasi, presisi, recall, dan skor F1 sedikit meningkat. Model yang
disempurnakan juga menghasilkan nilai positif benar dan negatif benar yang superior, menandakan peningkatan
kemampuan pengenalan. Pengujian pada sampel baru yang belum pernah dilihat sebelumnya menghasilkan prediksi
yang 100% akurat, yang menunjukkan bahwa generalisasi telah menjadi lebih baik. Singkatnya, augmentasi data
adalah cara yang terbukti untuk mengatasi kumpulan data kecil dan membuat sistem inspeksi visual berbasis CNN
lebih andal di pabrik.

Keywords: AlexNet; data augmentation; deep learning; visual inspection; defect classification.

1. Introduction
In the manufacturing industry, product quality largely determines commercial value and operational reliability. The

visual inspection process that is carried out manually still faces various challenges such as subjectivity, inconsistencies,
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and the risk of human error. This is in line with the statement [1] that the manual visual inspection process on industrial
products is prone to errors and requires high costs.

Therefore, deep learning-based inspection systems are increasingly used because they are able to extract visual
patterns automatically and provide more consistent results than manual inspections.

However, the effectiveness of deep learning models is greatly influenced by the amount and variety of data used
during training. In many applications in manufacturing environments, flawed imagery datasets are generally very limited.
[1] notes that "the average size of the industrial inspection dataset is only about 2,500 samples, so deep learning models
cannot be optimally trained from scratch.” The findings are supported by [2] the assertion that flaw detection datasets in
manufacturing often experience "data scarcity, class imbalances, and data distribution shifts".

This condition causes the model to be easily overfitting, which is a state when the model is over-adjusting to the
training data but fails to generalize to the new data. Therefore, strategies are needed to increase the variety and
representation of data used during training.

One of the widely used solutions is data augmentation, which is the process of multiplying training data through
transformations such as rotation, flipping, zooming, and changes in light intensity. This technique has been proven to
significantly improve model performance. [3] showed that GAN-based augmentation on surface defect detection could
increase model sensitivity to 95.33% and specificity to 99.16%. In addition, [4] it emphasized that the scarcity of data
and small defect sizes in industrial products are the main reasons why augmentation techniques are urgently needed to
improve model performance.

Based on this background, this study focuses on the analysis of how augmented data affects the accuracy and stability
of Convolutional Neural Network (CNN) models in the classification of manufacturing images, with the aim of improving

the generalization capabilities of models under complex and varied industrial conditions.

2. Material and Method
2.1. Research Design

This study was conducted to analyze the effect of the application of data augmentation techniques on the accuracy
and stability of the Convolutional Neural Network (CNN) model in classifying casting product images between defect
and non-defect categories. This approach is in line with recent research confirming that data augmentation is an important
step towards improving model generalization on a limited industrial dataset [5], [6].

The research design was a quantitative experiment, in which two model training scenarios were performed: a model
without augmentation (baseline model) and a model with image augmentation uses various transformations (rotation,
flipping, zooming, and changes in light intensity). This basic augmentation technique is commonly used in modern visual

inspection because it has been proven to effectively expand the variety of datasets [7], [8].

2.2. Dataset Data and Sources

The dataset used consists of 13266 grayscale images (originally sourced from RGB images), classified into two
classes: defect and non-defect as a result of metal casting product documentation obtained from local industry databases
and open sources (public manufacturing defect dataset). The challenge of data imbalance and limited visual variation in
industrial datasets are the main reasons for the need for augmentation, as conveyed in a recent study on CNN-based defect
inspection [9], [10].
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Imagery is classified into two main categories: defect, consisting of 7516 images showing porosity, cracks, or other
surface defects, and non-defect, consisting of 5750 images with normal surface conditions without any anomalies. The
entire image had an original size of 300x300 pixels, then changed to 227x227 pixels to match the input size of the CNN
model used.

The dataset in this study has a class imbalance, with a proportion of 7516 def_front images and 5750 ok_front images.
Although the level of imbalance is not extreme, this condition still has the potential to affect the model's sensitivity to the
minority class. To minimize this bias, several strategies were implemented during the training process. First, class
weighting was used on the loss function so that errors in the minority class received a larger penalty. Second, augmentation
was performed proportionally on both classes, not only the def_front class, thereby increasing intra-class variation without
altering the distribution ratio between classes. This ensures that the augmented dataset maintains consistent representation
and does not exacerbate the original imbalance.

This balanced augmentation approach also provides the additional benefit of increased visual diversity, encompassing
variations in texture, lighting intensity, orientation, and surface conditions. Thus, the model gains better generalization
ability without artificially modifying the class distribution structure. Additionally, the F1-score is used as the primary
evaluation metric because it provides a more stable assessment on imbalanced datasets by balancing the influence of false
positives and false negatives. A sample of the dataset is shown in Figure 1, where Figure 1(a) illustrates a defect image
containing visible surface anomalies such as porosity or cracks, and Figure 1(b) presents a non-defect image with normal

and uniform surface conditions.

(@) (b)
Figure 1. Sample (a) def_front and (b) ok_front casting

images in grayscale format as used for model input

2.3. Split Data
Table 1 summarizes the data splitting scheme used in this study. The dataset consisted of 6633 images before
augmentation and 13266 images after augmentation. For both conditions, 80% of the data was allocated for training and

20% for validation to ensure effective CNN model training and performance evaluation.

Table 1. Data Splitting

Factors Data Splitting Percentage  Total Image (before data Total Image (after data
augmentation) augmentation)

Train 80% 5306 10613

Validation 20% 1327 2652

Total 100% 6633 13266
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2.4. Preprocessing Data

Before the training process, the following pre-processing stages are carried out including normalize color and contrast
to adjust the lighting level between images, resizing the image to 227x227 pixels, performing utomatic labeling based on
file name and initial classification, and splitting the dataset with a proportion of 80% for training data and 20% for
validation data. The purpose of this preprocessing is to reduce visual noise [11], standardize image size, and ensure a
balanced distribution of data between classes. All RGB images were converted to grayscale (single-channel) to reduce
computational complexity and focus on textural and structural features essential for detecting casting defects such as

porosity and cracks.

2.5. Data Augmentation Techniques

The augmentation techniques used include rotation, horizontal/vertical flipping, zoom range, and brightness
adjustment. The selection of this technique is supported by findings [12] showing that geometric and photometric
augmentation directly improve CNN's ability to classify surface defects in industrial processes. In addition, the study [5]
introduced the concept of structured augmentation (PreAugNet) to overcome the limitations of industrial datasets, which
strengthens the basis for the use of augmentation in this study. Augmentation is also in line with the method discussed by
[13], which emphasizes that increasing intra-class variation through visual transformation can reduce overfitting on
defective datasets with limited distribution.

In this research, offline augmentation was applied prior to model training, where each original image in the training
set was transformed into two augmented images using randomly selected parameter values. As a result, the def front
class increased from 3758 to 7516 images, and the ok_front class increased proportionally, expanding the overall dataset
from 6633 to 13266 images.

The augmentation parameters used in this process are summarized in Table 2. Rotation, flipping (horizontal and
vertical), zoom, and brightness adjustment were applied randomly and could occur simultaneously within a single
augmentation step. Thus, an image could be rotated, flipped, and brightness-adjusted at once, enhancing visual diversity

without merely duplicating the dataset.

Table 2. Augmentation Data Parameters

Types of Augmentation Parameter Purpose

Rotation - 30° to 30° Mimicking camera angle variations

Horizontal Flip Probability 0.5 Adding object orientation

Vertical Flip Probability 0.5 Increase the diversity of vertical symmetry

Zoom Range 09-11 Simulate camera distance differences

Brightness Adjustment +25% Mimicking different lighting conditions
2.5.1 Resize

Resize is a linear transformation used to uniformly scale an image in both directions by applying scale factors Sy and

Sy. The transformation matrix used for the resizing process is shown in Eq. (1).
Sx 0 0
[0 Sy 0] @

0o 0 1
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2.5.2 Image Rotation
Image rotation is performed by applying a rotational transformation around a reference point using a rotation angle 6.
The corresponding rotation matrix is presented in Eq. (2)

O]

sin@ cos@ 0

[cose sin 6 0]
0 0 1

2.5.3 Flip
Flip transformation is used to perform horizontal and vertical reflections on an image. The matrices for horizontal and

vertical flips are respectively given in Eq. (3) and Eq. (4).

-1 0 width

Horizontal = [ 0 1 0 ] 3)
0 0 1
1 0 0

Vertikal = [0 -1 height} 4
0 o0 1

Each image in the training dataset was augmented using random combinations of these transformations, resulting in
an effective data volume increase of more than twice the original size. Table 3 presents examples of preprocessing results

generated using Egs. (1)—(4).

Table 3. Preprocessing Results (shown in grayscale representation)

Prepocessing Input Output
Resize ' = 2 ' = 3
300 x 300 227 x 227

Image Rotation

N
N

°
(<]

Flip

Horizontal

Vertical

2.6. CNN Model Architecture
The Convolutional Neural Network (CNN) architecture adopted in this study is AlexNet, which processes input

images of 227 x 227 x 3 and consists of five convolutional layers followed by three fully connected layers, totaling
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approximately 60 million parameters. The choice of AlexNet is motivated by its balance between accuracy, computational
efficiency, and architectural simplicity, which makes it suitable for industrial visual inspection scenarios where datasets
are typically small to medium in scale and hardware resources are often limited. Although more recent architectures such
as ResNet, DenseNet, MobileNet, and EfficientNet offer improved accuracy through deeper or more optimized feature
hierarchies, they generally require substantially higher computational power and tend to overfit when trained on limited
datasets [1], [14]. For casting defect imagery, most discriminative characteristics such as porosity, cracks, surface
irregularities, and low-to-mid—level textural variations can be effectively captured by AlexNet’s early convolutional
layers. These layers have been shown to extract strong edge, blob, and texture-level representations without necessitating
very deep networks [15]. Previous studies have demonstrated that AlexNet can achieve competitive performance in
industrial defect detection tasks. For example, the work of Zhao and Wu [16] reported that AlexNet performed comparably
to deeper architectures on casting defect classification, differing by less than 1% from ResNet-50. Similar findings in [17]
indicate that AlexNet maintains stable performance in data-constrained environments, often outperforming deeper models
when training samples are limited.

AlexNet also remains widely used in industrial applications due to its reproducibility, robustness, and relatively low
inference latency, which are essential for real-time inspection settings and deployment on edge devices [9], [18]. These
characteristics align with the operational constraints of industrial manufacturing, where rapid decision-making and
computational efficiency are required. The overall architecture as implemented in this study is illustrated in Figure 2, and
the details of the layer configuration are summarized in Table 4.

Input data Convl Conv2 Conv3 Conv4 ConvS FC6 FC7 FC8
: P % %
ﬁ 13x 13 X 384  13x 13 x 384 13% 13 X 256
27x 27 x 256
55x 55 x 96
1000
. 227x 227 %3 4096 4096

Figure 2. AlexNet Architecture
Table 4. AlexNet Layer Structure

No. Layer Type Kernel Size Stride / Padding  Output Size Activation Function

1 Convolutional Layer 1 96 filter, 11x11 Stride 4 55x55%96 ReLU + MaxPooling
(3%3, stride 2)

2 Convolutional Layer 2 256 filter, 5x5 Stride 1, padding 2 27x27x256 ReLU + MaxPooling
(3x3, stride 2)

3 Convolutional Layer 3 384 filter, 3x3 Stride 1, padding 1  13%x13x384 ReLU

4 Convolutional Layer 4 384 filter, 3x3 Stride 1, padding 1  13%x13x384 ReLU

Convolutional Layer 5 256 filter, 3x3 Stride 1, padding 1 13%x13x256 ReLU + MaxPooling

(3%3, stride 2)

6 Fully Connected Layer 1 4096 neuron - 1x1x4096 ReLU + Dropout(0.5)
7 Fully Connected Layer2 4096 neuron - 1x1x4096 ReLU + Dropout(0.5)
8 Fully Connected Layer3 2 neuron (defect - 1x1x2 Softmax

(Output) & non-defect)

The selection of this architecture is based on AlexNet's effectiveness in recognizing complex spatial patterns and

their stability to changes in lighting [19].

384



Imaduddien Ariefa et al./Jurnal Rekayasa Mesin
p-ISSN: 1411-6863, e-ISSN: 2540-7678
Vol.20|No.3| 379-392|December|2025

2.7. Model Performance Evaluation

In this study, the performance of the CNN model was evaluated using several quantitative metrics commonly applied
in image classification tasks, namely Accuracy, Precision, Recall, F1-Score, and Validation Loss. All metrics were
calculated based on the confusion matrix, which consists of four elements: True Positive (TP), representing the number
of defective images correctly identified as defective; True Negative (TN), representing non-defective images correctly
recognized as non-defective; False Positive (FP), referring to non-defective images misclassified as defective; and False

Negative (FN), referring to defective images incorrectly classified as non-defective.

2.7.1 Accuracy
Accuracy measures the proportion of correct predictions relative to the total number of evaluated samples, as defined
in Eq. (5):

R ~ TP + TN ©)
ceuracy = TP+ TN + FP + FN

2.7.2 Recall (Sensitivitas)
Recall (also referred to as sensitivity) measures the model’s ability to correctly identify all positive samples. A higher

recall indicates fewer missed defective samples (low FN). The formulation is shown in Eq. (6):

TP

Recall = TP+ FN

(6)

2.7.3 Precission
Precision quantifies the proportion of predicted positive samples that are truly positive, and a high value indicates a

low rate of false alarms (low FP). The metric is defined in Eq. (7):

TP
- - — 7
Precission TP + FP T FP ( )

2.7.4 F1 Score
The F1-Score represents the harmonic mean between Precision and Recall and is particularly suitable when dealing

with imbalanced datasets. Its calculation is presented in Eq. (8):

F1§ 2 x Recall x Precission ®)
COT€ = ~Recall + Precission

2.7.5 Validation Loss
Validation Loss quantifies the prediction error on the validation set at each epoch. For binary classification, the loss

function employed is Binary Cross-Entropy, as expressed in Eg. (9):
N

1 N P
L=—5 ) yi-logd) + (1 +y) log(1 + 3] ©
i=1

where y; notes the actual class label (0 or 1), y; is the predicted probability, and N is the total number of samples.
3. Results and Discussion

The results of the Convolutional Neural Network (CNN) model training in two scenarios, namely before and after

data augmentation, showed a significant increase in performance after the application of the augmentation technique. The
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initial dataset of 6.633 images was expanded to 13.266 images through an augmentation process with various

transformations such as rotation, flipping, zoom, and brightness adjustment.

3.1. Results Before Data Augmentation

In the non-augmented training scenario, the model achieved a Validation Loss of 0.019747, Validation Accuracy of
99.55%, Average Precision of 0.99501, Average Recall of 0.99581, and an Average F1-Score of 0.9954, computed using
Eq. (5)-(9). These results indicate good pattern recognition ability; however, the relatively higher Validation Loss (Eq.
9) compared to the augmented scenario suggests overfitting, as the model becomes too fitted to the limited training data

and exhibits reduced generalization capability.

3.2. Results After Data Augmentation

After augmentation, the dataset size doubled and the model achieved improved performance, yielding a Validation
Loss of 0.014853, Validation Accuracy of 99.62%, Average Precision of 0.99569, Average Recall of 0.99667, and an
Average F1-Score of 0.99617, calculated using Eq. (5)—(9). The 24.77% reduction in Validation Loss (Eq. 9) indicates a
lower error rate and improved model stability. The increases in Accuracy, Precision, Recall, and F1-Score demonstrate
that the augmented data enabled the model to learn more diverse visual features, resulting in enhanced robustness to
variations in illumination, orientation, and surface characteristics. These findings align with prior studies [6], [20], which
reported that data augmentation particularly GAN-based significantly enhances generalization by increasing intra-class

variability.

3.3. Model Performance Comparison Analysis

Based on Table 5, all performance parameters improved, with a notable reduction in validation loss, indicating
enhanced model stability on the validation set. Although the numerical increase in accuracy (0.0703164%) appears small,
such an improvement is significant in deep learning based visual inspection, as even marginal gains can substantially

reduce misclassifications in large-scale industrial production.

Table 5. Comparison of the results of the two scenarios

Parameter Before Augmentation After Augmentation Change
Validation Loss 0.019747 0.014853 12477 %
Validation Accuracy (%) 99.55 99.62 10.0703164 %
Average Precision 0.99501 0.99569 10.068341 %
Average Recall 0.99581 0.99667 1 0.086362 %
Average F1-Score 0.9954 0.99617 10.077356 %

The improvement in the performance of the CNN model after augmentation is in line with the findings of several
recent studies. The research in its systematic review states that more than 59% of flaw detection studies use data
augmentation as a primary strategy to improve model generalization. Later [10] in his research it was also shown that
augmentation under reflective lighting conditions can improve the resistance of the model to variations in the industrial
environment. In addition, [21] it was found that the application of data enhancement techniques in steel surface inspection

was able to increase the sensitivity of the model to microdefects without causing overfitting.
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3.4. Confusion Matrix Analysis

Figure 3(a) Confusion matrix before data augmentation shows TP for def front = 747, FN =5, FP = 1, and TN for
ok_front = 574. After augmentation, Figure 3(b) shows an increase to 1493 TP and 1150 TN, with FN = 10 and FP = 1.
The rise in TP and TN is consistent with the expanded dataset size.

Confusion Matrix - Validation Data Confusion Matrix - Validation Data

def front def _front

True Class
True Class

ok_front ok_front

def_front ok_front

def_front ok_front §
- - Predicted Class

Predicted Class

@ (b)

Figure 3. (a) Confusion matrix before data augmentation and (b) Confusion matrix after data augmentation

Based on the confusion matrix results shown in Figure 3(a) and Figure 3(b), the analysis indicates that the increase
in TP (from 747 to 1493) and TN (from 574 to 1150) after augmentation demonstrates that the model became more
capable of recognizing both defective and non-defective images when exposed to greater visual variability. The FP value
remained very low (1 in both cases), confirming that augmentation did not introduce additional false alarms that could
negatively affect the inspection process. Although the absolute FN value increased slightly (from 5 to 10), the proportion
of FN relative to the total validation samples remained unchanged. The FN rate before augmentation, as calculated in Eq.

(10), was:

FN rate before augmentation = %x 100% =0.377% (10)
Similarly, the FN rate after augmentation, shown in Eq. (11), was:

FN rate after augmentation = %x 100% = 0.377% (11)

The equality of FN percentages (0.377% in both cases) confirms that the augmentation process did not increase the relative

risk of misclassifying defective samples.

3.5. Analysis of Predicted Results on New Data Samples (After Data Augmentation)

As illustrated in Figure 4, six sample images representing the two primary classes—def _front and ok_front—were
evaluated using new data that the model had not encountered during training. The results in Figure 4(a) show the model’s
prediction outputs for the new grayscale images, while Figure 4(b) provides a detailed classification analysis for each
class. All samples were classified with 100% accuracy, demonstrating that the model was able to generalize effectively

to unseen data for both defect and non-defect categories.
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3.5.1Class def_front (Surface defects)

The first three images show objects with different deformed patterns in terms of crack shape, rough texture, and
variations in surface imperfections. The model gives a prediction of def_front (100%), indicating that it is able to
recognize essential defective features even on the new image. This also demonstrates that the model does not merely
memorizes patterns from the training data, but is capable of strongly generalizing the defect patterns. The use of
augmentation (rotation, lighting changes, flipping, zoom) successfully makes the model resilient to new image variations.
These findings are in line with research [6] confirming that intra-class augmentation improves the model's ability to

recognize various forms of defects in different objects.

def'ront (453 images) okfront (262 images)

- o i o
Akurasi: 98.0% 300 Akurasi: 100.0%

400

Jumlah Prediksi

defront  okront defront ok ront

(@) (b)

Figure 4. (a) Prediction results with new grayscale data, (b) Detailed analysis of each class

3.5.2 Class ok_front (Non-disabled)

The three images in the second row show the surface of the object that is flat, reflective, and without visual anomalies.
The model predicts ok_front (100%), indicating that it can accurately distinguish normal textures from defective textures
with precision. Augmentation also enhances the model’s sensitivity in recognizing the absence of defects, which is crucial
for achieving high true negative rates. Moreover, no false positives (FP) appear in the new data, showing that non-
defective features are stably recognized. These results supports the findings of the study [9] that augmentation helps

improve specificity, i.e. the model's ability to recognize normal classes consistently.

3.5.3 Evaluation of Model Generalization.

The 100% prediction success of the new data shows that the model has excellent generalization capabilities. This is
supported by the low validation loss (0.014853), precision, recall, and F1-score above 0.996, as well as the he confusion
matrix after augmentation showed that FP and FN were very minimal. The model shows no signs of overfitting, as it
continues to perform highly accurately on previously unseen data. Augmentation is proven to help models recognize
variations in lighting, orientation, object position, surface characteristics, and visual noise in industrial production. These
results is in line with research [10], which states that photometric and geometric augmentation increase robustness to

dynamic factory environmental conditions.
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3.5.4 Comparison with Manual Visual Inspection from Literature

Manual visual inspection has traditionally been used in industrial quality control, especially in casting processes where
defects such as porosity, cracks, and surface irregularities must be detected. However, its reliability is limited by human
factors including experience, fatigue, lighting, and subjective judgment. Prior studies consistently report variability,
reduced sensitivity to subtle defects, and inconsistent decisions across operators, highlighting the need for automated
inspection methods.

To position the performance of the proposed CNN model within this context, its results were compared with several
Scopus-indexed studies on manual visual inspection. The comparison focuses on accuracy, precision, human error
tendencies, and robustness to defect variability. Table 6 presents a summary of these differences.

Table 6. Comparison of Manual Visual Inspection (Literature) and CNN Model (This Study)

Manual Inspection

Reported Limitations of

CNN + Augmentation

Literature
Performance Manual Inspection Performance (This Study)
[22] Accuracy = 97%, Precision = Decisions affected by lighting, Accuracy 99.62%, Precision
92.4% subjectivity, and inspector 0.99569, Recall 0.99667, F1
variability 0.99617
[23] Low repeatability; inconsistent  Caused by fatigue, perception TP & TN nearly doubled after
inspector decisions bias, inconsistent inspection augmentation, stable results
protocols
[24] Typical manual accuracy Unsuitable for high-volume Strong generalization: 100%
ranges 85 - 97% production; error increases with  correct predictions on new
fatigue samples
[25] Human accuracy decreases for ~ Visual detection threshold limits ~ CNN robust to subtle defects
low-contrast or micro defects human performance through augmentation
[26] Accuracy influenced by Fatigue, reduced attention, CNN stable, unaffected by

ergonomics & inspector

inconsistent judgments

external conditions

psychology

The literature consistently indicates that manual visual inspection is limited by human cognitive and environmental
variability, resulting in false detections, missed micro-defects, and inconsistent operator decisions. In contrast, the CNN
model with data augmentation in this study achieved higher accuracy, precision, and recall, with error rates notably lower
than those reported for manual inspection. The model also demonstrated strong generalization on unseen samples. These
results highlight the advantages of deep learning—based inspection over traditional manual methods in industrial
environments that require high consistency, rapid processing, and minimal error tolerance. Overall, the comparison
confirms that CNN-based automated inspection provides superior accuracy and stability, making it suitable for modern

quality control in foundry applications.
4.  Conclusion

Based on the analysis conducted in this study, it can be concluded that the application of data augmentation techniques

(such as rotation, flipping, zoom, and brightness adjustment) significantly improved the performance and generalization
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capabilities of AlexNet's Convolutional Neural Network (CNN) model in the task of defect classification on casting
product images.

Data augmentation effectively reduced overfitting, as indicated decrease in the value of the Validation Loss by 24.77%
(from 0.019747 to 0.014853). This indicates the model becomes more stable and has lower errors when faced with
validation data that has never been seen before.

Compared with findings from the existing literature on manual visual inspection, the CNN model in this study clearly
outperforms human-based inspection methods, which are often limited by subjectivity, fatigue, lighting conditions, and
inconsistent decision-making. While manual inspection typically yields accuracy values ranging between 85% and 97%,
the augmented CNN model demonstrated significantly higher accuracy, precision, and recall, unaffected by
environmental or cognitive limitations.

The Confusion matrix analysis proved that the augmented model had a better ability to identify both classes (True
Positive and True Negative increased almost twofold), without causing an increase in false alarms (False Positives
remained low). In addition, models trained on augmented data show excellent generalization ability when tested on new
data samples, successfully predicting all samples accurately (100%). This proves the model's toughness to visual
variations such as differences in lighting, angles, and textures encountered in real industrial conditions.

Overall, the study confirms that data augmentation is a simple but highly effective strategy and is important to
overcome data limitations and improve the reliability of deep learning-based visual inspection systems in manufacturing

environments.
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