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Abstract 

 

Growing concerns regarding greenhouse gas emissions and fuel consumption have placed considerable demands on 

the automotive sector. To address these issues, this research applies unsupervised learning approaches namely 

Principal Component Analysis (PCA) and K-Means Clustering to categorize vehicles based on attributes associated 

with energy efficiency and environmental impact. Using a publicly available vehicle dataset, PCA was used to simplify 

the data by reducing dimensionality while preserving significant patterns. Subsequently, K-Means was employed to 

segment the data into three distinct clusters according to shared features like engine size, fuel usage, and CO₂ output. 

The resulting groupings effectively identified categories such as fuel-efficient, moderately consuming, and high-

consumption vehicles. Visual representation in two-dimensional space further confirmed meaningful distinctions 

among the clusters, offering practical insights for both manufacturers and consumers. 
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Abstrak  

 

Tingginya kekhawatiran terhadap emisi gas rumah kaca dan konsumsi bahan bakar menuntut sektor otomotif untuk 

menemukan pendekatan analitis yang lebih efektif. Studi ini menerapkan metode pembelajaran mesin tak terawasi 

yaitu Principal Component Analysis (PCA) dan K-Means Clustering untuk mengelompokkan kendaraan berdasarkan 

atribut-atribut terkait efisiensi bahan bakar dan dampak lingkungan. Dataset kendaraan yang tersedia secara publik 

digunakan untuk mereduksi dimensi data menggunakan PCA tanpa kehilangan pola penting. Setelah itu, algoritma K-

Means digunakan untuk membagi data ke dalam tiga klaster berdasarkan kesamaan karakteristik seperti kapasitas 

mesin, konsumsi bahan bakar, dan emisi CO₂. Hasil klastering ini mengungkap tiga kelompok kendaraan dengan 

kategori efisiensi tinggi, konsumsi sedang, dan konsumsi tinggi. Visualisasi dua dimensi menunjukkan pemisahan 

klaster yang signifikan, memberikan wawasan praktis bagi produsen dan konsumen. 

Kata kunci: clustering; emisi CO₂; analisis data; konsumsi bahan bakar; machine learning 

 

1. Introduction  

As global environmental concerns intensify, the automotive sector is undergoing significant transformation [1]. 

Modern vehicles are now expected not only to perform efficiently but also to meet strict environmental regulations [2]. 

Increasing carbon emissions from internal combustion engines have become a major contributor to air pollution and 

climate change [3, 4]. Consequently, governments and environmental organizations across the world are pushing for 

improvements in vehicle fuel efficiency and reductions in greenhouse gas emissions [5, 6]. Consumers are likewise more 

inclined to choose vehicles that are both fuel-efficient and environmentally sustainable [7-9]. 

In response to this shift, leveraging advanced data analysis techniques has become a critical tool in understanding and 

improving vehicle performance [10]. Among these approaches, machine learning has emerged as an effective solution for 

discovering insights from complex datasets [11]. Specifically, unsupervised learning a category of machine learning that 

identifies patterns in data without predefined labels offers valuable potential for clustering vehicles based on operational 

and environmental metrics [12]. 
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Two widely adopted techniques in unsupervised learning are Principal Component Analysis (PCA) and K-Means 

Clustering [13]. PCA is used to simplify high-dimensional data by projecting it onto a lower-dimensional space while 

preserving the most significant variance. This not only improves visualization but also enhances computational efficiency 

and reduces redundancy [14, 15]. K-Means, meanwhile, is a clustering algorithm that organizes data into groups based 

on similarity, typically using Euclidean distance as a metric [16]. The synergy of PCA and K-Means has proven effective 

in applications involving classification, segmentation, and trend detection in various domains [17]. 

Despite the widespread use of PCA and K-Means in fields such as marketing, medical diagnostics, and industrial 

quality control [18-21], their implementation in automotive performance analysis especially for fuel economy and CO₂ 

emissions is still relatively underutilized. While prior research often focuses on predictive models for fuel consumption 

[22] or supervised classification based on vehicle types [23], the potential for unsupervised techniques to reveal hidden 

clusters among vehicle characteristics remains largely untapped. 

This study addresses that gap by applying PCA and K-Means to a publicly available vehicle dataset. The dataset 

includes six primary features: fuel consumption in urban and highway conditions, engine displacement, cylinder count, 

fuel cost per year, and CO₂ emissions from the tailpipe. The use of PCA allows these variables to be compressed into two 

principal components, enabling easier interpretation and visual representation. K-Means clustering is then used to group 

vehicles into distinct categories based on performance and environmental efficiency. 

The goal is to identify clusters of vehicles with similar behavior—such as low-emission, fuel-efficient models versus 

high-emission, fuel-intensive models—without requiring labeled data. This approach offers valuable insights that can 

assist manufacturers in benchmarking their products, policymakers in designing environmental strategies, and consumers 

in making informed choices. 

The research objectives are as follows:To reduce data complexity using PCA while maintaining interpretability; To 

cluster vehicles using K-Means based on relevant performance metrics; To visualize the clusters in two-dimensional space 

for clearer understanding; To explore the implications of these clusters on energy efficiency and emission reduction 

strategies. Through this method, the study contributes to the growing interest in data-driven sustainable engineering, 

demonstrating how unsupervised learning can support environmental assessment in the automotive field.  

2. Material and Method 

This study employs a publicly available dataset containing detailed specifications of various vehicles, which was 

sourced from GitHub (https://raw.githubusercontent.com/hadley/fueleconomy/master/data-raw/vehicles.csv). The 

dataset includes variables such as fuel consumption in city and highway driving conditions (miles per gallon), engine 

displacement (in liters), number of cylinders, estimated annual fuel cost (in US dollars), and tailpipe CO₂ emissions (grams 

per mile). These features were selected because they offer measurable indicators of a vehicle’s environmental and 

operational performance. Table 1 shows the number of data and the percentage of data distribution. 

Table 1. Number of data and percentage of data distribution 

Category Number Percentage (%) 

Total of Data 34565 100 

Train Data 24195 70 

Test Data 6913 20 

Validation Data 3456 10 

Sample Data 15 0.04 

 



Sunardi et al./Jurnal Rekayasa Mesin 

p-ISSN: 1411-6863, e-ISSN: 2540-7678 

Vol.20|No.2|279-288|Agustus|2025 

281 
  

2.1. Data Cleaning and Standardization Process 

The dataset was initially examined to assess completeness. Rows containing missing or non-numeric entries were 

excluded to maintain the integrity and accuracy of the analysis. Following data cleaning, a standardization process was 

conducted using the StandardScaler function from the Scikit-learn library. This step ensures that all numerical features 

are transformed to a common scale with zero mean and unit variance, preventing any single feature from dominating the 

clustering results due to differences in magnitude. 

 

2.2. Principal Componen Analysis (PCA) 

To reduce data dimensionality and enhance visualization, Principal Component Analysis (PCA) was applied. This 

technique transforms the original six-dimensional data into two new uncorrelated components, which capture the highest 

variance in the dataset. The two principal components were then used as the input for the clustering phase. PCA not only 

improves computational efficiency but also allows the data to be visualized in a two-dimensional plot, making it easier to 

interpret the relationships among vehicles. The transformation can be expressed using the following formula [1]: 

𝒁 = 𝑿 ∙ 𝑾                     (1) 

In this study, 𝒁 denotes the projected data in the reduced-dimensional space obtained after transformation, while 𝑿 

represents the standardized data matrix, where rows correspond to the samples and columns correspond to the features. 

The transformation is achieved using 𝑾, which is the matrix of eigenvectors extracted from the covariance matrix of 𝑿. 

Through this projection, the high-dimensional data 𝑿 is mapped into a lower-dimensional representation 𝒁, thereby 

preserving the most significant variance in the dataset while reducing redundancy and computational complexity. 

 

2.3. K-Means Clustering 

For the clustering process, K-Means Clustering was implemented. This algorithm partitions the data into k distinct 

groups by minimizing the variance within each cluster. Based on exploratory analysis and domain knowledge, the number 

of clusters (k) was set to three. These clusters are intended to represent three general categories of vehicle efficiency: low, 

moderate, and high fuel consumption/emission groups. The K-Means model was initialized with a fixed random state to 

ensure reproducibility. The objective function of K-Means is defined as [2]: 

𝑱 =  ∑ ∑ ‖𝒙𝒋 − 𝝁𝒊‖
𝟐

𝒙𝒋∈𝑪𝒊
𝒌
𝒊=𝟏                                 (2) 

In the context of K-Means clustering, the objective function aims to minimize the total within-cluster variation, which 

is expressed as 𝑱. This value represents the total within-cluster sum of squared distances, serving as a measure of 

compactness for the clusters. Each 𝒙𝒋 corresponds to the 𝒋-th data point that belongs to cluster 𝑪𝒊, while 𝝁𝒊 denotes the 

centroid or the mean position of all data points within cluster 𝒊. The parameter 𝒌 indicates the number of clusters specified 

in the analysis. By iteratively updating the centroids and reassigning data points, the K-Means algorithm seeks to minimize 

𝑱, thereby ensuring that the data points within each cluster are as close as possible to their respective centroid, leading to 

well-defined and meaningful groupings. 

The entire process data preprocessing, dimensionality reduction, and clustering was conducted using Google Colab, 

a cloud-based environment that supports Python and data science workflows. All code was executed using libraries such 

as Pandas, Matplotlib, Seaborn, and Scikit-learn. 

A simplified version of the methodology is summarized in the following workflow: 

1. Import vehicle dataset 

2. Data cleaning (remove incomplete rows) 
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3. Standardize numerical features 

4. Apply PCA to reduce to 2 components 

5. Perform K-Means clustering with k = 3 

6. Visualize clusters in 2D PCA space 

This methodological framework ensures a robust, interpretable, and replicable analysis of vehicle performance and 

environmental categorization. 

 

3. Results and Discussion 

This section presents the outcome of the data preprocessing, dimensionality reduction using PCA, and clustering using 

K-Means. The results are analyzed both quantitatively and visually to uncover underlying patterns in the vehicle dataset 

related to fuel consumption and emissions. 

 

3.1. Initial Data Analysis 

The cleaned dataset consists of 15 vehicle samples selected from different brands, focusing on six critical numerical 

features: city fuel economy (city), highway fuel economy (highway), engine displacement (displ), number of engine 

cylinders (cylinders), estimated annual fuel cost (fuelCost), and tailpipe CO₂ emissions (CO2TailpipeGpm). The data was 

standardized to ensure equal weighting in the clustering process. Table 2 displays a snapshot of the standardized values 

for the 15 vehicles. The wide range in values confirms the variation in vehicle specifications and performance, which is 

necessary for meaningful clustering. 

Although the complete dataset comprises more than 34,000 vehicle entries, only 15 representative samples are shown 

in Table 2 to provide a clearer illustration of the preprocessing, standardization, and initial clustering process. These 

selected samples demonstrate the diversity of vehicle specifications across different brands and categories. The 

subsequent PCA transformation and K-Means clustering, however, were applied to the entire dataset, and the 

comprehensive results are presented in Figures 3 and 4 as well as Table 3. Thus, the 15 vehicles serve only as illustrative 

examples, while the main basis of analysis relies on the full dataset. 

Table 2. Sample of Standardized Data for 15 Vehicles  

Car Brands City Highway Cylinders Displ FuelCost CO2TilePigeGpm 

TOYOTA 13 17 8 5.7 3650 592.47 

HONDA 26 35 4 1.7 1850 296.23 

FORD 31 39 4 2 1750 299.41 

CHVROLET 13 17 8 6.5 4250 727.14 

BMW 

MERCEDES 

17 

20 

25 

28 

6 

6 

3 

3 

3000 

2600 

444.35 

445.00 

AUDI 20 28 4 2 2600 393.00 

NISSAN 12 18 8 5.6 2950 634.79 

HYUNDAI 18 27 6 3.8 2600 423.19 

SUBARU 22 30 4 2 2400 360.00 

KIA 18 25 6 3.5 2600 423.19 

MAZDA 25 34 4 1.6 1950 317.39 

VOLKSWAGEN 21 26 4 1.8 2400 386.39 

PORCHE 17 23 6 3.8 3150 467.74 

LAND ROVER 11 14 8 4.6 5050 740.58 
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3.2. Dimensionality Reduction using PCA 

To visualize the data more effectively, Principal Component Analysis (PCA) was applied to reduce the original six 

features into two principal components. These components explain the highest variance in the dataset, making it possible 

to represent multidimensional data in two dimensions without significant loss of information. 

As seen in Figure 1, PCA projects the samples onto a 2D space, revealing clusters of vehicles with similar 

characteristics. Vehicles with high efficiency tend to group together, while those with poor fuel economy and high 

emissions are separated along the principal axes. 

 

 

Figure 1. 2D Visualization of 15 Vehicle Samples using PCA 

 

3.3. Clustering using K-Means 

 

 

Figure 2. K-Means Clustering Output for 15 PCA-Transformed Vehicle Samples 
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Following PCA, K-Means Clustering was used to segment the vehicle samples into three clusters. The number of 

clusters (k = 3) was chosen based on domain knowledge and initial experimentation. Each cluster represents a distinct 

category of vehicle efficiency: Cluster 0: Vehicles with low fuel consumption and emissions (efficient group); Cluster 1: 

Moderately efficient vehicles; Cluster 2: Vehicles with high fuel consumption and CO₂ emissions 

The results of clustering are shown in Figure 2 where each color denotes a different cluster. Vehicles are clearly 

grouped, supporting the effectiveness of PCA in simplifying the data for clustering purposes. 

Table 3. Cluster Assignments after PCA and K-Means Clustering 

Car Brands City Highway Cylinders Displ FuelCost CO2TilePigeGpm Cluster 

TOYOTA 13 17 8 5.7 3650 592.47 1 

HONDA 26 35 4 1.7 1850 296.23 0 

FORD 31 39 4 2 1750 299.41 0 

CHVROLET 13 17 8 6.5 4250 727.14 1 

BMW 

MERCEDES 

17 

20 

25 

28 

6 

6 

3 

3 

3000 

2600 

444.35 

445.00 

2 

2 

AUDI 20 28 4 2 2600 393.00 0 

NISSAN 12 18 8 5.6 2950 634.79 1 

HYUNDAI 18 27 6 3.8 2600 423.19 2 

SUBARU 22 30 4 2 2400 360.00 0 

KIA 18 25 6 3.5 2600 423.19 2 

MAZDA 25 34 4 1.6 1950 317.39 0 

VOLKSWAGEN 21 26 4 1.8 2400 386.39 0 

PORCHE 17 23 6 3.8 3150 467.74 2 

LAND ROVER 11 14 8 4.6 5050 740.58 1 

 

Table 3 summarizes the cluster assignment for each of the 15 samples, including their original performance metrics. 

This grouping makes it easier to identify which vehicles fall into desirable categories for environmental and economic 

considerations. 

3.4. Full Dataset Visualization and Cluster Distribution 

 

Figure 3. Clustering of Entire Vehicle Dataset (PCA 2D Projection) 



Sunardi et al./Jurnal Rekayasa Mesin 

p-ISSN: 1411-6863, e-ISSN: 2540-7678 

Vol.20|No.2|279-288|Agustus|2025 

285 
  

 

Beyond the sample of 15 vehicles, the clustering model was applied to the entire dataset of vehicles from the original 

source. PCA transformation was again performed, and the K-Means algorithm classified all data points into the same 

three clusters. Vehicles were plotted in PCA space (Figure 3) and color-coded by cluster (Figure 4). The majority of 

vehicles fall into the middle-efficiency group (Cluster 1), while Clusters 0 and 2 contain vehicles that are clearly more or 

less efficient based on fuel consumption and CO₂ output. 

 

 

Figure 4. Visualization of K-Means Clustering with PCA of the Entire Data 

 

Table 3 provides a breakdown of the number of vehicles in each cluster. This quantitative insight reveals that 

although the dataset contains many vehicles with moderate efficiency, a significant number are still categorized as either 

highly efficient or highly consuming. 

Table 3. Number of Vehicles per Cluster (k=3) 

Cluster Total of 

data 

Precentage (%) 

0 10773 17 

1 15323 35 

2 8469 14 

 

3.5. Interpretation and Discussion 

The combination of PCA and K-Means has proven to be a robust approach in analyzing high-dimensional vehicle 

data. PCA effectively reduced data complexity, enabling clearer interpretation and visualization, while K-Means produced 

meaningful groupings that reflect substantial differences in vehicle performance and environmental impact. 

From the clustering results, three distinct groups of vehicles were identified. Cluster 0 represents the most fuel-

efficient vehicles with smaller engine displacements, fewer cylinders, and lower CO₂ emissions. These characteristics are 

commonly found in compact cars or hybrid models designed for urban usage. Such vehicles demonstrate not only 

economic advantages through reduced fuel costs but also environmental benefits by producing less greenhouse gas 
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emissions. Cluster 1, which accounts for the majority of vehicles, consists of moderately efficient models. These typically 

represent mid-size sedans and crossovers, balancing performance and efficiency. Cluster 2 includes vehicles with larger 

engines, higher cylinder counts, and significantly higher CO₂ output. This cluster is dominated by SUVs, luxury vehicles, 

and performance cars where consumer preferences are oriented toward power rather than efficiency. 

When comparing the results to prior studies, similarities and differences can be observed. For example, Salloum et al. 

(2024) applied PCA-KMeans for tweet classification and reported improved interpretability of clusters, which parallels 

the clarity gained in this automotive study [17]. Meanwhile, Zhao et al. (2023) focused on predictive models of fuel 

consumption, whereas our unsupervised approach provides exploratory insights without relying on labels [22]. 

Furthermore, Tyagi et al. (2022) demonstrated that PCA-KMeans synergy works well for edge computing data, and our 

findings confirm that this synergy is equally applicable to automotive energy efficiency. The consistency across these 

studies highlights the generalizability of PCA-KMeans for complex, multidimensional datasets [13]. 

From a practical perspective, the clusters generated in this study hold valuable implications. For automotive 

manufacturers, understanding that vehicles in Cluster 0 are favored in sustainability-driven markets can guide investment 

toward developing compact and hybrid technologies. Cluster 1 vehicles, representing the mainstream market, indicate the 

need for incremental efficiency improvements to comply with tightening regulations. Vehicles in Cluster 2, however, may 

face increasing challenges as carbon taxation policies expand worldwide. Manufacturers producing vehicles in this group 

may need to invest in lightweight materials, advanced combustion technologies, or electrification to remain competitive. 

For policymakers, the clustering results provide empirical evidence that regulatory interventions can be targeted more 

effectively. For instance, subsidies or incentives can be directed toward models falling within Cluster 0, while stricter 

taxation and emission penalties can be applied to vehicles in Cluster 2. This differentiated approach ensures that 

regulations are based on actual performance rather than nominal categories such as engine type or vehicle size. 

From the consumer standpoint, the clustering visualization offers a simplified decision-making tool. Prospective 

buyers can easily identify whether a vehicle model aligns with their environmental and economic preferences. For 

environmentally conscious consumers, Cluster 0 models become an obvious choice, while those prioritizing performance 

may recognize the trade-offs associated with selecting vehicles in Cluster 2. 

Nevertheless, this study has limitations that should be acknowledged. First, the analysis is based on six primary 

variables, which although critical, do not fully capture the multifaceted nature of vehicle performance. Factors such as 

maintenance cost, fuel type (e.g., diesel, ethanol, hybrid, or electric), and lifecycle emissions were not included. Second, 

the clustering algorithm used (K-Means) assumes spherical cluster shapes and may not perfectly capture more complex 

distributions. Alternative clustering methods such as DBSCAN or hierarchical clustering may provide additional insights. 

Finally, the dataset primarily reflects vehicles from the North American market, which may limit generalizability to other 

regions where engine types, fuel standards, and driving behaviors differ. 

Future research should expand the dataset to include electric and hybrid vehicles, enabling analysis of emerging trends 

in sustainable transportation. Incorporating additional attributes such as acceleration performance, safety ratings, or 

production costs could enhance the robustness of clustering results. Moreover, integrating multi-method approaches (e.g., 

PCA with fuzzy clustering or neural embeddings) may capture more nuanced patterns in automotive data. 

In summary, the interpretation of results confirms that the proposed PCA-KMeans framework is effective in 

categorizing vehicles based on efficiency and emissions. The expanded discussion underscores its relevance for multiple 

stakeholders and positions the method as a promising tool for sustainable automotive design and policy-making. 
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4. Conclusion 

This study applied Principal Component Analysis (PCA) and K-Means Clustering to analyze vehicle performance 

based on six features related to fuel efficiency and emissions. PCA effectively reduced the data's dimensionality, making 

it easier to visualize and interpret. K-Means grouped the vehicles into three distinct clusters, reflecting different efficiency 

levels. 

Vehicles in the most efficient cluster generally had small engines, fewer cylinders, and lower CO₂ emissions, while 

high-consumption vehicles showed opposite characteristics. These findings confirm that unsupervised learning methods 

can reveal meaningful patterns in performance data without needing predefined categories. 

The approach offers practical insights for manufacturers, regulators, and consumers. It enables objective classification 

based on real-world specifications, supporting sustainable engineering efforts. Future improvements may include 

additional features or adaptation to electric and hybrid vehicles for broader applicability. 
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