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Abstract 

The study investigates the phenomenon of vortex-induced vibration (VIV) using Large Eddy Simulation (LES) at a 

Reynolds number of 1000, focusing on transitional flow conditions. LES has proven effective in understanding VIV 

across Reynolds number regimes, aiding in comprehending flow physics and mechanisms behind VIV. The research 

aims to contribute data for validating numerical models and informing engineering practices. The study employs the 

Navier-Stokes equation and the continuity equation to analyze fluid flow, treating it as incompressible due to negligible 

density changes. The three-dimensional incompressible momentum equation is discretized using the finite volume 

method within the spatial domain. Resolution of the pressure Poisson equation ensures compliance with free divergence 

conditions, enhancing computational fluid dynamics simulations' reliability. Validation of the fluid flow solver 

involves comparing computed drag force coefficients with established benchmarks, showing agreement within small 

discrepancies. The study delves into vibration behavior induced by cross flow at various reduced velocities (𝑈𝑅), noting 

distinct patterns ranging from irregularities at low 𝑈𝑅 to quasi-periodic behavior at higher values. Analysis of maximum 

cylinder displacement (𝑦𝑚𝑎𝑥  ) across different reduced velocities and mass ratios underscores the complex relationship 

between system parameters and displacement dynamics. A consistent occurrence of y_max at a specific reduced 

velocity highlights its significance, while varying mass ratios affect displacement patterns, indicating the importance 

of understanding these dynamics for optimizing fluid-structure interaction systems. 
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Introduction 

The investigation of Vortex-Induced Vibration (VIV) within fluid mechanics and engineering has attracted considerable 

interest due to its significant implications for the design and functionality of diverse structures subjected to fluid dynamics 

[1]. VIV manifests when a bluff body, like a cylinder submerged in a flowing fluid, undergoes oscillatory forces instigated 

by the shedding of vortices trailing behind the body. This phenomenon poses significant risks of structural fatigue and 

potential failure across a spectrum of engineering domains, including offshore platforms, risers, marine cables, bridges, 

and pipelines. 

Vortex shedding within the framework of a cylindrical object submerged in a uniform flow entails a complex fluid 

dynamic phenomenon where the passage of fluid around the cylinder induces the generation of alternating vortices 

encircling its form [2]. As the fluid medium interacts with the surface of the cylinder, it engenders oscillations in pressure 

along its perimeter, leading to the cyclic liberation of vortices downstream. The cyclical shedding of these vortices 

engenders a characteristic pattern, giving rise to what is commonly referred to as vortex shedding. This intricate process 

has the potential to elicit vibrations or exert forces that significantly impact the structural integrity and dynamic behaviour 

of the cylinder. The velocity of the fluid flow, alongside the geometric dimensions of the cylinder and various other 

pertinent parameters, markedly influences the frequency and distinctive characteristics of the vortex shedding 

phenomenon. Central to the quantification of the shedding frequency is the Strouhal number, a dimensionless parameter 

emblematic of the relationship between the shedding frequency, the characteristic length of the cylinder, and the fluid 

velocity, aptly defined by Equation (1). 
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𝑆𝑡 =
𝑓𝑣𝐷

𝑈∞

 (1) 

where D represents the diameter of the cylinder, 𝑓𝑣 denotes the frequency of vortex shedding, and 𝑈∞ stands for the free-

stream velocity. In the scenario of flow passing around a cylinder, the Strouhal number is additionally influenced by the 

Reynolds number, defined as Equation (2). 

𝑅𝑒 =
𝑈∞𝐷

𝜈
 (2) 

Flow-induced vibration (FIV) can be conceptualized as the oscillatory motion of a cylinder supported by elastic bearings, 

resulting in transverse and parallel oscillations relative to the flow direction or two degrees of freedom (2-DoF). This 

modelling approach has been explored by Bishop & Hassan [3], Bearman [4], [5], Sarpkaya [6], [7] and Williamson & 

Govardhan [8]. Despite the fact that cylinders in reality may oscillate with 2-DoF, FIV models focusing solely on 

transverse motion are often employed. Studies conducted by Feng [9], Brika & Laneville [10], Khalak & Williamson [11] 

reveal that the dynamic response of cylinders experiencing FIV is heavily contingent upon the parameters of mass-

damping (𝑚∗ 𝜁), where 𝑚∗ signifies the ratio of mass displaced by the fluid and 𝜁 denotes the damping ratio supporting 

the cylinder, as defined in Equations (3) and (4). 

𝑚∗ =
4𝑚

𝜌𝑑2𝜋
 (3) 

𝜁 =
𝑐

2√𝑘𝑚
 (4) 

Understanding VIV at different Reynolds numbers (Re), which characterize the flow regime, is crucial for predicting and 

mitigating its effects. The Reynolds number represents the ratio of inertial forces to viscous forces in the flow and 

significantly influences the flow behaviour around a cylinder. At Re=1000, the flow is typically in the transitional regime, 

where laminar and turbulent flow characteristics coexist, leading to complex vortex shedding patterns and potentially 

intriguing dynamics of VIV. To study VIV at Re=1000, researchers often employ numerical simulations, such as Large 

Eddy Simulation (LES), which is a computational fluid dynamics (CFD) technique capable of resolving large-scale 

turbulent structures while modelling the effects of smaller-scale turbulence. LES offers a high-fidelity approach to 

investigate the complex flow phenomena associated with VIV, capturing the unsteady nature of the flow and its interaction 

with the cylinder in detail. 

Belloli et al. [12] investigated the influence of mass ratio and Reynolds numberand the investigation results showcase 

unexpectedly high oscillation amplitudes in vortex-induced vibrations, highlighting the need for improved data on high 

mass ratio and high Reynolds number models. Zhao et al. [13] found the vortex-induced vibration of a square cylinder at 

low Reynolds numbers can be accurately predicted using the finite element method, with the flow approaching angle 

affecting vibration amplitude and lock-in regime. Bourguet [14] found that flexible cylinders can experience vortex-

induced vibrations at subcritical Reynolds numbers, causing unsteady flow and cellular wake patterns, with connections 

between orbit orientation and flow-structure energy transfer. Wang et al. [15] studied the effect of stiffness nonlinearity. 

The study found that cubic stiffness nonlinearity affects the vortex-induced vibration of a circular cylinder at low 

Reynolds numbers, affecting peak amplitude and response envelope. Gu et al. [16] investigated the Reynolds number 

effects on vortex-induced vibration (VIV) responses. Those are non-negligible and considering them with mass ratio 

influences can improve engineering applications. Konstantinidis et al. [17] studied vortex-induced in-line vibration at low 

Reynolds numbers. The study results exhibit resonant amplification within the excitation region, irrespective of the mass 

ratio value, providing new physical insight. Behara et al. [18] studied VIV of the three staggered circular cylinders, the 

results exhibit periodic oscillations and nonperiodic vibrations at low Reynolds numbers, with the upstream cylinder 

showing initial and lower synchronization response modes. Chen et al.  [19] researched on the vortex-induced vibrations 

of tandem cylinders in laminar cross-flow. The research results indicated that the flow can cause wake-induced galloping 

phenomena, with two distinct vibration patterns observed: vortex-induced vibration and wake-induced galloping. A study 
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from de Lima [20] found that viscoelastic materials can effectively mitigate vortex-induced vibrations in engineering 

structures, potentially improving durability and safety. 

Previous research has demonstrated the utility of LES in studying VIV across various Reynolds number regimes, 

providing insights into the flow physics and shedding light on the mechanisms governing VIV. By applying LES to study 

VIV at Re=1000, this research aims to contribute to the understanding of VIV in transitional flow conditions and provide 

valuable data for validating numerical models and informing engineering practices. 

Methodology 

Numerical method 

To accurately predict the dynamics of fluid flow, researchers meticulously solve governing equations. These equations, 

specifically the Navier-Stokes equation (which encompasses the momentum equation and continuity equation), serve as 

the foundation for fluid dynamics analysis. In this study, the continuity equation—denoted as Equation (5)—approaches 

fluid flow as incompressible, meaning that density changes are negligible. The three-dimensional incompressible 

momentum equation, expressed in Equations (6), is implemented in the current study. 

To facilitate a comprehensive understanding of fluid behaviour, the researchers employ the finite volume method. This 

method discretizes the equations within the spatial domain. A critical aspect of this process is determining pressure within 

the momentum equations. This determination is achieved through the resolution of the pressure Poisson equation. By 

ensuring the fulfilment of free divergence conditions stipulated by the continuity equation, this crucial step enhances the 

reliability of computational fluid dynamics simulations.  

∇ ∙ �̅� = 0 (5) 

𝜕�̅�𝑖

𝜕𝑡
+ ∇̇ ∙ (�̅��̅�) = −

1

𝜌
∇𝑝 + (𝜈 + 𝜈𝑡)∇2𝐮 + 𝐟 (6) 

where, �̅�𝑖 signify the filtered fluid velocity vector, p represents the filtered fluid pressure field, 𝜈𝑡 represents sub grid 

scale (SGS) eddy kinematic viscosity, 

𝜈𝑡 = (𝐶𝑠Δ̅)2𝑆̅  

𝑆̅ = (2𝑆�̅�𝑗𝑆�̅�𝑗)
1
2 (3) 

Δ̅ = (Δ𝑥Δ𝑦Δ𝑧)
1
3 (4) 

where, 𝑆�̅�𝑗  represents the filtered strain rate tensor, 𝐶𝑠 represents the Smagorinsky contant with 𝐶𝑠 = 0.18. 

The structural dynamics of the circular cylinder undergoing a cross flow at Reynolds number equal to 1000 govern by the 

vibration equation. The vibration equation governs the rate of change of velocity, velocity and displacement of the 

cylinder.  

�̈� +
4𝜋𝜁

𝑈𝑅

�̇� +
4𝜋2

(𝑈𝑅)2
𝑦 =

2𝐶𝑦

𝜋 𝑚∗
 (8) 

Where 𝑦, �̇�, and �̈� signify the cylinder acceleration, velocity, and displacement in transverse direction, 𝜁d represents the 

damping ratio supporting the cylinder, 𝑈𝑅 represents the reduced velocity, 𝑚∗represents the mass ratio of the cylinder to 

the displaced fluid and 𝐶𝑦 represents the transverse force coefficient. In practical terms, understanding these dynamics is 

essential for predicting the behavior of structures subjected to fluid forces. Researchers and engineers use such equations 

to optimize designs, assess stability, and ensure the reliability of various systems. 
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Validation of in-house numerical code  

The validation of the fluid flow solver was conducted utilizing a scenario related to the studied case, entailing the flow of 

a fluid past a stationary cylinder at a Reynolds number of 1000. The parameter under inspection for validation was the 

drag force coefficient, with its computed value subjected to comparative analysis against established benchmarks, notably 

those documented by Jordan & Fromm [21] and DynniKova [22]. The outcome of this validation, signifies an agreement 

between the computed results and the aforementioned benchmark values. The result comparison with the benchmark 

cases shows minute discrepancies with the percentage of 0.557% and 0.266%. This agreement attests to the efficacy and 

accuracy of the present numerical methodology in predicting fluid flow dynamics and the forces acting upon the cylinder 

under consideration at a Reynolds number of 1000. 

Table 1. The comparison of the average drag force coefficeient, 𝐶𝐷,𝑎𝑣𝑔, with the benchmark results 

Data 𝐶𝐷,𝑎𝑣𝑔 Discrepancy 

Present study 1.246903676 - 

Jordan & Fromm [21] 1.24 0.557% 

DynniKova [22] 1.2436 0.266% 

 

 

 

Figure 1. Graphical representation of flow past circular cylinder at Re=1000 
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Figure 2. Graphical representation of flow past circular cylinder at Re=1000 

 

Figure 2 showcases a cylindrical object submerged in a uniform flow. As fluid flows around the cylinder, it generates 

alternating vortices encircling the cylinder’s form. These vortices result from the shedding of fluid layers as they pass 

over the cylinder surface. The concept of vorticity, which quantifies the local rotation of fluid elements, is crucial here. 

Positive vorticity regions (indicated in red) correspond to rotational motion in anticlockwise direction, while negative 

vorticity regions (blue) represent rotational motion in anticlockwise direction. These alternating vortices play a pivotal 

role in the overall fluid behaviour. As the fluid interacts with the cylinder’s surface, it experiences oscillations in pressure. 

These pressure fluctuations occur along the cylinder’s perimeter due to the varying flow velocities. When the pressure 

reaches certain critical points, it triggers the cyclic liberation of vortices downstream. 
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Figure 3. Time history of non-dimensional cylinder displacement within the range of 1 ≤ 𝑈𝑅 ≤ 8 

Figure 3 illustrates the temporal evolution of cylinder displacement within the range of 1 ≤ 𝑈𝑅 ≤ 8. At 𝑈𝑅 = 1.0, the 

cylinder displacement exhibits considerable variability and lacks a clear periodic response, characterized by sporadic 

spikes and disturbances occurring at frequencies surpassing the base frequency. Conversely, for 𝑈𝑅 = 2.0, the cylinder 

displacement demonstrates a quasi-periodic behavior, featuring drops in amplitude subsequent to reaching peak 

displacement. Moreover, as the displacement amplitude increases, there is an observable augmentation in the base 

frequency. Similarly, at 𝑈𝑅 = 3.0, the displacement amplitude displays a tendency to decrease post-peak, albeit to a lesser 

extent compared to the response observed at 𝑈𝑅 = 2.0. Notably, a beating phenomenon is evident at 𝑈𝑅 = 4.0, 

manifesting prominently in the initial cycles before gradually diminishing in subsequent cycles. Conversely, at 𝑈𝑅 = 5.0, 

a notable disparity in the displacement amplitude pattern is observed compared to lower 𝑈𝑅 values, with a slight increase 

in displacement amplitude over time. Additionally, a beating phenomenon is discernible at 𝑈𝑅 = 6.0, exhibiting a distinct 

pattern from previous instances, characterized by a gradual increase in the peak amplitude of beating. This trend persists 

at 𝑈𝑅 = 7.0, where periodic amplitude fluctuations occur, transitioning from higher to smaller amplitudes in successive 

cycles. 
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Figure 3. The maximum cylinder displacement at all the time to the reduced velocity, 𝑈𝑅. 

The maximum cylinder displacement within the range of 2 ≤ 𝑈𝑅 ≤ 8 is illustrated in Figure 3, with varying line types 

denoting different mass ratio values falling within the range of 2 ≤ 𝑚∗ ≤ 10. Notably, the peak value of maximum 

cylinder displacement, denoted as 𝑦𝑚𝑎𝑥 , consistently occurs at the same 𝑈𝑅 value of 4.83 across all investigated 𝑚∗ values.  

Moreover, the influence of mass ratio on 𝑦𝑚𝑎𝑥  is pronounced, with a discernible trend of diminishing 𝑦𝑚𝑎𝑥 values as 𝑚∗ 

increases, particularly evident at lower 𝑚∗ values. This trend underscores the corelation between mass ratio and cylinder 

displacement dynamics. Despite variations in mass ratio, the overarching pattern of 𝑦𝑚𝑎𝑥  evolution remains consistent, 

showcasing a characteristic increase with 𝑈𝑅 until it culminates at the peak value corresponding to 𝑈𝑅 = 4.83. 

Subsequently, as 𝑈𝑅continues to rise, 𝑦𝑚𝑎𝑥  gradually decreases, indicative of the system's response to increasing fluid 

flow velocities. Furthermore, beyond the peak, the occurrence of smaller spikes in 𝑦𝑚𝑎𝑥  highlights additional complexities 

in the dynamic behavior, with the amplitude of these spikes exhibiting a tendency to decrease as 𝑈𝑅 increases. This 

nuanced understanding of the interdependent relationships between mass ratio, flow velocity, and cylinder displacement 

is crucial for explaining the underlying mechanisms governing fluid-structure interactions in such systems.  

Conclusion 

This study provides a detailed examination of vibration induced by the cross flow at Reynolds number equal to 1000 with 

the partitioned approach. The observations reveal distinct behaviors at different 𝑈𝑅, ranging from considerable variability 

and lack of periodicity at 𝑈𝑅 = 1.0 to the manifestation of quasi-periodic behavior at 𝑈𝑅 = 2.0. As reduced velocity 

increases, the displacement patterns undergo notable changes, including tendencies for post-peak decrease (albeit less 

pronounced at 𝑈𝑅 = 3.0), the emergence and diminishment of beating phenomena, and shifts in displacement amplitude 

patterns. Particularly intriguing is the disparity observed at 𝑈𝑅 = 5.0, where displacement amplitude exhibits a slight 

increase over time, deviating from the patterns observed at lower reduced velocity. Furthermore, the subsequent analysis 

of maximum cylinder displacement (𝑦𝑚𝑎𝑥) across reduced velocity (2 ≤ 𝑈𝑅 ≤ 8) and varying mass ratios (2 ≤ 𝑚∗ ≤ 10) 

underscores the intricate interplay between mass ratio, reduced velocity, and cylinder displacement dynamics. The 

consistent occurrence of 𝑦𝑚𝑎𝑥  at 𝑈𝑅 = 4.83 across different mass ratios highlights the significance of this reduced velocity 

in dictating peak displacement. Moreover, the influence of mass ratio on 𝑦𝑚𝑎𝑥  reveals a discernible trend of diminishing 

values with increasing 𝑚∗, further emphasizing the nuanced relationship between system parameters and displacement 

dynamics. Understanding these dynamics is vital to explain the mechanisms governing fluid-structure interactions and 

advancing the design and optimization of related systems. 
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