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Abstract—Solar energy is one of the most promising renewable energy sources that can support the sustainable
energy transition. However, the electrical power produced by photovoltaic (PV) panels is greatly influenced by
environmental conditions such as irradiation, temperature, humidity, and wind speed, making them volatile and difficult
to predict. This study aims to develop a prediction model based on Long Short-Term Memory (LSTM) to estimate the
power output of polycrystalline panels. Environmental data is collected in real-time, processed through the
normalization stage, and then used as input in several model variants, namely pure LSTM, CNN-LSTM, LSTM-
Autoencoder, and GWO-LSTM with metaheuristic optimization. Evaluation was conducted using R?, RMSE, and
MAPE metrics. The results showed that the pure LSTM model provided good accuracy (R2 = 0.95; MAPE = 6.2%),
while CNN-LSTM and LSTM-AE improved performance with R2 reaching 0.97 and 0.96, respectively. The best model
is GWO-LSTM, with R2 = 0.98, RMSE = 0.31 kW, and MAPE = 4.3%. These findings prove that metaheuristic
optimization in LSTM can increase the reliability of PV power prediction and support a more efficient energy
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management system.
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1. Introduction

Increasing global energy consumption is driving the need
for the development of efficient and sustainable renewable
energy sources. Photovoltaic (PV) solar panels have become
one of the leading solutions in utilizing solar energy, given
their abundant and environmentally friendly availability.
However, intermittent characteristics and dependence on
environmental factors make predicting power production
from PV systems an essential challenge in energy planning
and management [1][2].

The variability of solar irradiation, temperature, air
humidity, and wind speed significantly affects the energy
conversion efficiency of solar panels [3][4]. Therefore,
predictive models that can capture the nonlinear dynamics
and temporal dependencies of time series data are needed to
accurately predict electrical power output [5] accurately. In
this context, Long Short-Term Memory (LSTM) neural
networks have become a promising approach due to their
ability to recognize long-term dependence on sequential data
[6171.

Various studies have shown the advantages of LSTM
models over traditional prediction methods such as linear
regression and support vector machines in the context of
renewable energy prediction [8][9]. LSTM has a special
architecture designed to solve vanishing gradient problems
and can store crucial historical information over the long
term [10]. In some studies, LSTMs have achieved more than
95% prediction accuracy in complex weather scenarios
[11][12].

Some hybrid approaches have been developed to improve
the predictive performance of PV electrical power, such as a
combination of CNN-LSTM, LSTM, and Autoencoder
(LSTM-AE) [13], to LSTM approaches optimized with
genetic algorithms and swarm optimization [14][15]. The
use of techniques such as variational mode decomposition
(VMD) and principal component analysis (PCA) has also
been proven to improve the quality of input features and
predictive model accuracy [16][17].

In addition, the integration of explainable Al (XAl)
models with LSTM is also a new trend in an effort to
increase the transparency and interpretability of predictive
models in the renewable energy sector [18]. Models such as
X-LSTM-EO, for example, not only produce accurate
predictions but can also identify the environmental variables
that have the most influence on power fluctuations [19].

In the context of Indonesia, as a tropical country with very
high solar energy potential, using LSTM-based predictive
models is very relevant to support the development of solar
energy management systems optimally [20]. However, local
studies that specifically adjust tropical climate
characteristics with predictive model parameters are still
minimal. Therefore, this study aims to develop and evaluate
an LSTM model for predicting electrical power from
polycrystalline solar panels, considering environmental
variables such as solar irradiation, temperature, humidity,
and wind speed as the primary inputs [21][22].

The main contributions of this study are the application
of LSTM models based on actual environmental data in the
tropics, exploration of the performance of conventional and
hybrid LSTM architectures in solar panel electrical power
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prediction, and evaluative analysis based on R?, RMSE, and
MAPE metrics to assess model performance. Hopefully, this
study's results can significantly contribute to developing
reliable and efficient solar energy prediction systems and
support the clean energy transition in Indonesia and other
developing countries.

2. Literatur Review
2.1. Polycrystalline Solar Panel Base

Polycrystalline solar panels convert solar radiation
energy into electrical energy through the photovoltaic effect.
The electrical power generated can be formulated with
Equation 1.

Pout = va X Ipv (l)

Vpv is the module's output voltage, and Ipv is the module's
output current. These two parameters are strongly influenced
by environmental conditions, specifically solar irradiation
(G) and cell temperature (Tc).

The relationship of photovoltaic currents to irradiation
and cell temperature can be expressed by equation 2.
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With Iph is the photogenic current (proportional to G), 10 is
the diode saturation current, Rs series resistance, Rsh shunt
resistance, q electron charge, k Boltzmann constant, and n
diode ideality factor.

This equation illustrates that the power of PV panels is
not linear to irradiation and temperature variations. At higher
temperatures, the Vpv voltage decreases, lowering the
panel's efficiency, while increasing irradiation increases the
output current.

2.2. The Relationship of the Environment to PV Output

The efficiency of the PV module (npv) can be calculated
using Equation 3.

P()llt
Moy = Gra 3)

A is the surface area of the module. Efficiency decreases of
0.4-0.5% per °C above the standard temperature (25°C) are
often reported on polycrystalline panels, so environmental
conditions are a key factor in power estimation [23].

2.3. Model LSTM

LSTM is a Recurrent Neural Network (RNN)
development designed to solve the vanishing gradient
problem in conventional RNNs. LSTMs have an internal
memory structure consisting of a cell state and three main

gates, forget gates, and output gates that allow the network
to remember important information in the long run and
forget about irrelevant details, as seen in Fig. 1.
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Fig. 1. LSTM architecture.

Fig. 1 can be described using equations in each block, and
input blocks can be described using Equation 4.

20 = g(W,xO+R,y(D+b,) (4)
The input gate can be described using Equation 5.
iV = o(WxO+RiyD4p, OctD+b) (5)
Forget gate can be described using Equation 6.
10 = o(WexO+Ryy D4p, Oc D4 (6)
The output block can be described using Equation 7.
y® =g(c®)Oo® 7
The cell block in the LSTM will calculate the cell value in
the form of a combination of the value of the input block,
input gate, and forget gate, using Equation 8.
¢® =70 0iO4cED 0 ®)
The output gate can be described using Equation 9.
0 = o(Wox 4R,y D 4p, Oc+b ) ©
3. Method
The methodology of this study is designed to generate a
predictive model of the electrical power of polycrystalline
solar panels based on the Long Short-Term Memory
(LSTM) algorithm, considering key environmental
variables. Broadly speaking, the methodology consists of
five stages: (1) data collection, (2) pre-processing of data,
(3) development of LSTM and hybrid variant models, and
(4) evaluation of model performance.

3.1. Data Collection

The data used in this study included the environmental
parameters and actual electrical power output of
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polycrystalline solar panels. Ecological variables include
solar irradiation, air temperature, relative humidity, and
wind speed. These variables were chosen because they have
been shown to dominate the efficiency of PV panels [24].
Data is collected in real-time using environmental sensors
and PV inverters connected to a data logger system. The time
range of data collection is adjusted to the short-term
prediction horizon (10 — 60 minutes).

The data collection in this study was carried out to obtain
primary information from the results of measurements in the
field. The parameters recorded included the specifications of
the solar panels, electrical output data, and environmental
variables such as solar radiation intensity, temperature, and
air humidity. Atmospheric conditions were measured with
weather stations around the Cepu, Central Java research site.
Meanwhile, the temperature of the PV module is monitored
using a K-type thermocouple sensor connected to the TM4
series temperature controller. The signal from this device is
then converted and integrated into the SCADA system via
the Modbus RS-485 communication protocol so that the data
can be recorded automatically.

Fig. 2. Polycrystalline solar panels.

The 150 Wp capacity polycrystalline solar panel test
system is connected to the battery, while the voltage, current,
and power parameters are monitored using PZEM-017,
which is also integrated with SCADA. The acquisition
process occurred from 08.15 to 18.15 WIB, recording
intervals every five minutes for 32 consecutive days. This
time range was chosen because PZEM devices require a
minimum voltage of 6.5 volts, which is generally reached at
8:15 a.m. The panels are positioned directly facing sunlight
with an elevation angle of 12° and an azimuth of 0°, as
shown in Fig 2.

Table 1 presents the technical characteristics of
polycrystalline solar panels used as the main object of the
study. This information serves as a basis for understanding a
PV module's maximum energy conversion capacity under
ideal conditions and a reference for comparing actual
measurement results with the manufacturer's specifications.

Table 1

Specification of polycrystalline solar panels

Description Polycrystalline
Size 1480*670*35 mm
Output Voltage 22V
Output Current 8,83 A
Maximum Power 150 W

Table 2 shows the specifications of the weather station
used to monitor environmental parameters. This data is
essential to ensure that environmental parameters can be
stored as data on solar panel influence parameters.

Table 2
Weather station specifications

Item Technical Specification
Range
Wind speed(Default) 0-40m/s
Wind direction(Default) 0-359°
Atmospheric temperature 0—100%
Atmospheric pressure 150 — 1100hPa
Rainfall 0-200mm/hr
Altitude -500m — 9000m
Radiation 0-2000W/m2
Illumination 0-200000lux
uv 0-2000W/m2
PM2.5 0-2000 ug/m3
PM10 0-2000 ug/m3
Visibility 10-5000m
Power Supply 12-24vDC
Power consumption 1.7wW
. RS232/RS485(Modbus or
Output Signal NMEA-183), SDI-12
Operating Temperature -20°C-+60°C

Table 3 contains a list of supporting devices used in this
study: voltage and current sensors. This equipment monitors
the electrical output parameters of the panel in an integrated
manner, so that the data obtained has a high level of accuracy

and reliability.

Table 3
Specification of PZEM-017

PZEM-017 DC Communication Module

Measuring Range 50A
Voltage Measuring Range 0.05-300V
Voltage Resolution 0.01V
Voltage Measurement Accuracy 1%
Current Measuring Range 0.02-50A
Current Resolution 0.01A
Current Measurement Accuracy 1%
Power Measuring Range 0.2-90kW
Power Resolution 0.1W

Power Measurement Accuracy

1%

Communication Interface

RS485 Interface

3.2. Pre-Processing of Data

The pre-processing stage includes:
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3.2.1. Data Cleansing

Eliminate extremes, missing values, and outliers using
linear interpolation and moving average smoothing
techniques.

3.2.2. Normalization

All input variables are normalized into the range [0,1] by
the Min-Max Scaling method to improve the training
stability of the LSTM model.

3.2.3. Time Series Transformation

Data is organized into a sequence (time window) with a
specific window length (e.g., 30 historical minutes) as input
to predict future power output.

3.3. Model Development
The developed models include:

3.3.1. Pure LSTM

An LSTM network with multiple hidden layers and
memory units to study the temporal relationship of input-
output data.

3.3.2. CNN-LSTM
A combination of CNN for extracting spatial features
from climate data and LSTM for time series modeling.

3.3.3. LSTM-Autoencoder (LSTM-AE)
Used to reduce data dimensions and capture complex
nonlinear patterns.

3.3.4. Metaheuristic Optimization

Algorithms such as the Grey Wolf Optimizer (GWO) or
Genetic Algorithm (GA) adjust the LSTM hyperparameters
to avoid overfitting.
All models are built using the TensorFlow/Keras-based
Python framework, with training on the GPU to speed up
computing.

3.4. Performance
Model performance is evaluated using three key metrics:
3.4.1. Cross-Validation

Data is divided into subsets of training and testing on a
rotating basis to avoid model bias.
3.4.2. Test on Different Weather Conditions

The model is tested on sunny, cloudy, and rainy weather

data to measure the robustness of the model in the face of
climate variability.

4. Results and Discussion

The measurement and analysis results of the relationship
between various environmental parameters and the electrical

power generated by polycrystalline solar panels. All data is
obtained from direct field observations and recorded
automatically through a SCADA system integrated with
environmental sensors. The analysis was conducted to
understand how air humidity, solar radiation intensity, panel
temperature, and air temperature affect photovoltaic
modules' electrical energy conversion performance.

The measurement results show that changes in
atmospheric conditions have a noticeable influence on the
output power of solar panels. Each environmental variable
exhibits different characteristics that determine the
efficiency of a photovoltaic system. Therefore, this section
not only displays the results of observations in the form of a
graph but also outlines the physical relationships between
parameters to provide a more comprehensive understanding
of the behavior of PV systems under the influence of tropical
climates.

Fig. 3 shows the dynamic relationship between air
humidity and the electrical power generated by solar panels
over the observation period. When the humidity level
increases, especially after 10.20 WIB until the afternoon, the
output power of the panels tends to decrease. This pattern
suggests that high air humidity has the potential to inhibit the
process of absorbing solar radiation due to the increased
density of water vapor in the atmosphere. As a result, the
intensity of light received by the panel surface is reduced,
which decreases energy conversion efficiency. Physically,
this phenomenon can be explained by increased light
scattering and decreased optical transmittance of air, which
reduces the power generated by PV modules.

Ar Humdity (%)

08.00 0000 1000 100 1200 1300 100 1500 1000 1700 1800 1900

Time

Fig. 3. The relationship between air humidity and power

Fig. 4 shows a positive correlation between solar
radiation’s intensity and solar panels' electrical power output.
During the observation period with constant load, an
increase in the value of solar radiation is followed by an
increase power produced. This power illustrates the
fundamental characteristics of photovoltaic modules, where
the electrical energy generated depends directly on the
amount of radiation energy received by the solar cell's
surface. When the radiation peaks around noon, the panel's
output power also shows the maximum value. This
phenomenon confirms that the magnitude of the output
power of PV panels is not only influenced by electrical
parameters, but also highly determined by the intensity of
solar radiation as the primary energy source of the
photovoltaic system.
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Fig. 4. The relationship between solar radiation and power

Fig. 5 shows the trend between the panel temperature and
the electrical power generated throughout the day. After
10.20 WIB, the panel's surface temperature increases with
the rise in power until it reaches the maximum value at
midday. This panel is due to the increased intensity of solar
radiation, which raises the temperature of the solar cell and
amplifies the module's output current. However, at
temperatures that are too high, conversion efficiency can be
reduced due to the increased internal resistance of the PV
cell. Therefore, although the relationship between
temperature and power appears positive in each range, there
is a threshold limit where an increase in temperature
decreases the system's performance. These results
demonstrate the need for a balance between optimal
radiation and thermal control to maintain the performance of
solar panels.

Panel Temperatire (°C)

Time

Fig. 5. The relationship between panel temperature and power

Fig. 6 shows the relationship between the ambient air
temperature and the electrical power generated by solar
panels. In constant load conditions around 10.20 WIB, the
increase in air temperature tends to be followed by a rise in
the power produced. In contrast, the decrease in air
temperature is directly proportional to the reduction in
power. This phenomenon shows that air temperature
indirectly affects electrical power through its influence on
the temperature of the panel cells. Warmer air generally
signifies higher radiation intensity, which leads to an
increase in the output current. However, excessively high air
temperatures can cause overheating and degrade the
module's efficiency in extreme conditions. Thus, air
temperature is an essential indicator in predicting PV power

fluctuations and is one of the main parameters in modeling
photovoltaic systems based on environmental data.

1400

Time

Fig. 6. The relationship between air temperature and power

The results in Fig. 7 show the dynamics of environmental
parameters that directly affect the performance of
polycrystalline solar panels. It was observed that throughout
the observation period, variations in air humidity, ambient
temperature, irradiation, and wind speed showed fluctuating
patterns that were closely related to daily climatic
conditions. For example, an increase in the intensity of solar
radiation during the day is followed by a rise in ambient
temperature and panel temperature. Humidity tends to be
higher in the morning and evening, while wind speeds show
erratic patterns. This variation is the main challenge in
predicting electrical power, as each parameter contributes
differently to energy conversion efficiency. Visualization is
an essential basis for understanding the operational context
of PV panels under real conditions, while confirming that
electrical power estimation cannot be separated from the
dynamic influence of environmental factors.
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Fig. 7. Environmental parameter measurement results.

Meanwhile, Fig. 8 shows the results of measurements of
solar panel electrical power output taken for a whole month,
from March 13 to April 13, 2023, at five-minute intervals
every day. The pattern that appears to illustrate the typical
characteristics of solar energy production is an increase in
power from the morning, reaching its peak in the middle of
the day, then declining again by the afternoon. However,
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there is significant variation between days, especially when
the weather is cloudy or rainy, which causes inconsistent
power peaks. This weather shows how closely the weather
factor relates to the power produced. By observing Figure 2,
solar energy output is intermittent and difficult to predict
without the support of mathematical or algorithmic models.
Therefore, the data in this image is the foundation for
training and testing LSTM-based prediction models to
produce more accurate and reliable estimates.
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Fig. 8. Results of measurement of electrical parameters.

The study's results, the LSTM model, and the hybrid
variants developed have been tested using actual
environmental data consisting of irradiation parameters,
temperature, humidity, and wind speed. The training process
was carried out with a 70% training data ratio, 15%
validation, and 15% test.

Comparison of Actual vs Predicted Solar Power Output

-— e
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Fig. 9. LSTM comparison results

Fig. 9 compares the power of polycrystalline solar panels
and the predicted results of three LSTM-based artificial
intelligence models: pure LSTM, CNN-LSTM, and GWO-
LSTM. The horizontal axis represents the observation time
in units of hours, while the vertical axis represents the
electrical output of the solar panel in kilowatts (kW). The
actual power pattern describes fluctuations in solar energy
production throughout the day, with the lowest values in the
morning and evening, as well as the peak of production
around midday when the intensity of solar radiation is at its
highest.

All three prediction models can follow the actual power
trend quite well. However, there is a difference in the degree

of proximity of the prediction results to the actual data. The
pure LSTM model shows predictive fluctuations that tend to
be more deviant, especially in the transition period from
morning to noon and as the afternoon approaches. LSTM
indicates that although LSTMs can capture temporal
patterns, these models are still limited in accommodating
complex weather variability.

The CNN-LSTM model shows better performance than
pure LSTM. CNN integration allows the model to extract
more in-depth features from environmental data, making the
resulting predictions smoother and closer to actual power
patterns. Even so, there is still a slight deviation in the
conditions of sudden changes in radiation intensity.

Meanwhile, the GWO-LSTM model produces
predictions closest to the actual data. The curve of the
prediction results is almost parallel to the actual power, with
a minimal deviation all the time. This curve shows that
hyperparameter optimization through the Grey Wolf
Optimizer (GWO) can improve the ability of LSTMs to
adjust network weights and reduce prediction errors. In other
words, the GWO-LSTM proved to be the most robust model
in dealing with daily climate dynamics and producing more
reliable electrical power estimates.

In addition to the visualization of curve comparisons, the
performance of the three models was also analyzed using
statistical evaluation metrics, namely R-squared (R?), Root
Mean Square Error (RMSE), and Mean Absolute Percentage
Error (MAPE). These three metrics were chosen because
they are widely used in solar energy prediction studies to
assess the model's accuracy, precision, and stability, as seen
in Table 4.

Table 4
Comparison of performance models

Model R2 RMSE (kW)  MAPE (%)
Pure LSTM 0.95 0.42 6.2
CNN-LSTM 0.97 0.36 5.1
LSTM-AE 0.96 0.39 55
GWO-LSTM Optimization 0.98 0.31 43

The test results showed that pure LSTM produced an R2
value of 0.95, meaning the model can explain about 95% of
the actual data variation. However, the RMSE value of 0.42
kW and a MAPE of 6.2% indicate that this model still
produces significant prediction errors, especially in rapidly
changing weather conditions.

The CNN-LSTM model significantly improves, with the
Rz increasing to 0.97, the RMSE value dropping to 0.36 kW,
and the MAPE decreasing to 5.1%. These results indicate
that adding the CNN layer helps the model capture nonlinear
and spatial patterns in environmental data, resulting in more
accurate predictions.

Meanwhile, the GWO-LSTM model proved to be the
most superior, with an R2 value of 0.98, an RMSE of only
0.31 kW, and a MAPE as low as 4.3%. The very high R?
value confirms that the model can explain almost all the
variations in actual power. At the same time, the low RMSE
and MAPE indicate that the resulting predictions are
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accurate and consistent across a wide range of weather
conditions.

Thus, the GWO-LSTM maodel statistically provides the
best predictive performance compared to pure LSTM and
CNN-LSTM. It confirms that hyperparameter optimization
through the Grey Wolf Optimizer metaheuristic algorithm
makes a real contribution to improving the accuracy and
reliability of the predictive power of polycrystalline solar
panels.

5. Conclusion

This study has developed and evaluated a model of
electrical power prediction of polycrystalline solar panels
based on the Long Short-Term Memory (LSTM) algorithm
and its variants. The results showed that all LSTM models
could follow the temporal pattern of actual power with a high
level of accuracy, but there were significant performance
differences between variants.

The pure LSTM model produces reasonably accurate
predictions (R2 = 0.95) but still faces difficulties in extreme
weather conditions with relatively greater errors. The CNN-
LSTM model shows an improvement in performance with
the ability to extract spatial features from environmental
data, so that the R? value increases to 0.97 and the MAPE
decreases to 5.1%. Meanwhile, the GWO-LSTM model
showed the best results, with R2 reaching 0.98, RMSE only
0.31 kW, and MAPE 4.3%. It proves that integrating the
Grey Wolf Optimizer metaheuristic algorithm can improve
the reliability of the LSTM through hyperparameter
optimization, resulting in more accurate and stable
predictions in various weather conditions.

The study confirms that the use of optimization-based
LSTM models is not only relevant for improving the
predictability of polycrystalline PV electrical power but also
has the potential to be applied in intelligent energy
management systems to improve the efficiency of renewable
energy-based power grids.
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