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Abstract—Solar energy is one of the most promising renewable energy sources that can support the sustainable 

energy transition. However, the electrical power produced by photovoltaic (PV) panels is greatly influenced by 

environmental conditions such as irradiation, temperature, humidity, and wind speed, making them volatile and difficult 

to predict. This study aims to develop a prediction model based on Long Short-Term Memory (LSTM) to estimate the 

power output of polycrystalline panels. Environmental data is collected in real-time, processed through the 

normalization stage, and then used as input in several model variants, namely pure LSTM, CNN-LSTM, LSTM-

Autoencoder, and GWO-LSTM with metaheuristic optimization. Evaluation was conducted using R², RMSE, and 

MAPE metrics. The results showed that the pure LSTM model provided good accuracy (R² = 0.95; MAPE = 6.2%), 

while CNN-LSTM and LSTM-AE improved performance with R² reaching 0.97 and 0.96, respectively. The best model 

is GWO-LSTM, with R² = 0.98, RMSE = 0.31 kW, and MAPE = 4.3%. These findings prove that metaheuristic 

optimization in LSTM can increase the reliability of PV power prediction and support a more efficient energy 

management system. 
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1. Introduction 

Increasing global energy consumption is driving the need 

for the development of efficient and sustainable renewable 

energy sources. Photovoltaic (PV) solar panels have become 

one of the leading solutions in utilizing solar energy, given 

their abundant and environmentally friendly availability. 

However, intermittent characteristics and dependence on 

environmental factors make predicting power production 

from PV systems an essential challenge in energy planning 

and management [1][2]. 

The variability of solar irradiation, temperature, air 

humidity, and wind speed significantly affects the energy 

conversion efficiency of solar panels [3][4]. Therefore, 

predictive models that can capture the nonlinear dynamics 

and temporal dependencies of time series data are needed to 

accurately predict electrical power output [5] accurately. In 

this context, Long Short-Term Memory (LSTM) neural 

networks have become a promising approach due to their 

ability to recognize long-term dependence on sequential data 

[6][7]. 

Various studies have shown the advantages of LSTM 

models over traditional prediction methods such as linear 

regression and support vector machines in the context of 

renewable energy prediction [8][9]. LSTM has a special 

architecture designed to solve vanishing gradient problems 

and can store crucial historical information over the long 

term [10]. In some studies, LSTMs have achieved more than 

95% prediction accuracy in complex weather scenarios 

[11][12]. 

Some hybrid approaches have been developed to improve 

the predictive performance of PV electrical power, such as a 

combination of CNN-LSTM, LSTM, and Autoencoder 

(LSTM-AE) [13], to LSTM approaches optimized with 

genetic algorithms and swarm optimization [14][15]. The 

use of techniques such as variational mode decomposition 

(VMD) and principal component analysis (PCA) has also 

been proven to improve the quality of input features and 

predictive model accuracy [16][17]. 

In addition, the integration of explainable AI (XAI) 

models with LSTM is also a new trend in an effort to 

increase the transparency and interpretability of predictive 

models in the renewable energy sector [18]. Models such as 

X-LSTM-EO, for example, not only produce accurate 

predictions but can also identify the environmental variables 

that have the most influence on power fluctuations [19]. 

In the context of Indonesia, as a tropical country with very 

high solar energy potential, using LSTM-based predictive 

models is very relevant to support the development of solar 

energy management systems optimally [20]. However, local 

studies that specifically adjust tropical climate 

characteristics with predictive model parameters are still 

minimal. Therefore, this study aims to develop and evaluate 

an LSTM model for predicting electrical power from 

polycrystalline solar panels, considering environmental 

variables such as solar irradiation, temperature, humidity, 

and wind speed as the primary inputs [21][22]. 

The main contributions of this study are the application 

of LSTM models based on actual environmental data in the 

tropics, exploration of the performance of conventional and 

hybrid LSTM architectures in solar panel electrical power 
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prediction, and evaluative analysis based on R², RMSE, and 

MAPE metrics to assess model performance. Hopefully, this 

study's results can significantly contribute to developing 

reliable and efficient solar energy prediction systems and 

support the clean energy transition in Indonesia and other 

developing countries. 

2.  Literatur Review 

2.1. Polycrystalline Solar Panel Base 

Polycrystalline solar panels convert solar radiation 

energy into electrical energy through the photovoltaic effect. 

The electrical power generated can be formulated with 

Equation 1. 

 

                              Pout = Vpv x Ipv                                (1) 

 

 

Vpv is the module's output voltage, and Ipv is the module's 

output current. These two parameters are strongly influenced 

by environmental conditions, specifically solar irradiation 

(G) and cell temperature (Tc). 

The relationship of photovoltaic currents to irradiation 

and cell temperature can be expressed by equation 2. 

 

               Ipv = Iph-I0 (e
q(Vpv+IpvRs

nkTc
-1) -

Vpv+IpvRs

Rsh
             (2) 

 

With Iph is the photogenic current (proportional to G), I0 is 

the diode saturation current, Rs series resistance, Rsh shunt 

resistance, q electron charge, k Boltzmann constant, and n 

diode ideality factor. 

This equation illustrates that the power of PV panels is 

not linear to irradiation and temperature variations. At higher 

temperatures, the Vpv voltage decreases, lowering the 

panel's efficiency, while increasing irradiation increases the 

output current. 

 

2.2. The Relationship of the Environment to PV Output 

The efficiency of the PV module (ηpv) can be calculated 

using Equation 3. 

 

                                  ɳ
pv

 = 
Pout

G x A
                                     (3) 

 

A is the surface area of the module. Efficiency decreases of 

0.4–0.5% per °C above the standard temperature (25°C) are 

often reported on polycrystalline panels, so environmental 

conditions are a key factor in power estimation [23]. 

 

2.3. Model LSTM 

 

LSTM is a Recurrent Neural Network (RNN) 

development designed to solve the vanishing gradient 

problem in conventional RNNs. LSTMs have an internal 

memory structure consisting of a cell state and three main 

gates, forget gates, and output gates that allow the network 

to remember important information in the long run and 

forget about irrelevant details, as seen in Fig. 1. 

 

 

Fig. 1. LSTM architecture. 

Fig. 1 can be described using equations in each block, and 

input blocks can be described using Equation 4. 

 

                    z(t) = g(Wzx
(t)+Rzy(t-1)+bz)                        (4) 

 

The input gate can be described using Equation 5. 

 

            i
(t) = σ(Wix

(t)+Riy
(t-1)+p

i
⊙c(t-1)+b

i
)                 (5) 

 

Forget gate can be described using Equation 6. 

 

           f
(t) = σ(Wfx

(t)+Rfy
(t-1)+p

f
⊙c(t-1)+b

f
)                 (6) 

 

The output block can be described using Equation 7. 

 

                          y(t) = g(c(t))⊙o(t)                               (7) 

 

The cell block in the LSTM will calculate the cell value in 

the form of a combination of the value of the input block, 

input gate, and forget gate, using Equation 8. 

 

                    c(t) = z(t)⊙i
(t)

+c(t-1)⊙f
(t)

                                (8) 

 

The output gate can be described using Equation 9. 

 

             o(t) = σ(Wox(t)+Roy(t-1)+p
0
⊙c(t)+b

o
)                (9) 

 

3. Method 

The methodology of this study is designed to generate a 

predictive model of the electrical power of polycrystalline 

solar panels based on the Long Short-Term Memory 

(LSTM) algorithm, considering key environmental 

variables. Broadly speaking, the methodology consists of 

five stages: (1) data collection, (2) pre-processing of data, 

(3) development of LSTM and hybrid variant models, and 

(4) evaluation of model performance. 

3.1. Data Collection 

The data used in this study included the environmental 

parameters and actual electrical power output of 
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polycrystalline solar panels. Ecological variables include 

solar irradiation, air temperature, relative humidity, and 

wind speed. These variables were chosen because they have 

been shown to dominate the efficiency of PV panels [24]. 

Data is collected in real-time using environmental sensors 

and PV inverters connected to a data logger system. The time 

range of data collection is adjusted to the short-term 

prediction horizon (10 – 60 minutes). 

The data collection in this study was carried out to obtain 

primary information from the results of measurements in the 

field. The parameters recorded included the specifications of 

the solar panels, electrical output data, and environmental 

variables such as solar radiation intensity, temperature, and 

air humidity. Atmospheric conditions were measured with 

weather stations around the Cepu, Central Java research site. 

Meanwhile, the temperature of the PV module is monitored 

using a K-type thermocouple sensor connected to the TM4 

series temperature controller. The signal from this device is 

then converted and integrated into the SCADA system via 

the Modbus RS-485 communication protocol so that the data 

can be recorded automatically. 

 

 

 
 

Fig. 2. Polycrystalline solar panels. 

The 150 Wp capacity polycrystalline solar panel test 

system is connected to the battery, while the voltage, current, 

and power parameters are monitored using PZEM-017, 

which is also integrated with SCADA. The acquisition 

process occurred from 08.15 to 18.15 WIB, recording 

intervals every five minutes for 32 consecutive days. This 

time range was chosen because PZEM devices require a 

minimum voltage of 6.5 volts, which is generally reached at 

8:15 a.m. The panels are positioned directly facing sunlight 

with an elevation angle of 12° and an azimuth of 0°, as 

shown in Fig 2. 

 Table 1 presents the technical characteristics of 

polycrystalline solar panels used as the main object of the 

study. This information serves as a basis for understanding a 

PV module's maximum energy conversion capacity under 

ideal conditions and a reference for comparing actual 

measurement results with the manufacturer's specifications. 

 

Table 1 
Specification of polycrystalline solar panels 

 
Description Polycrystalline 

Size 1480*670*35 mm 
Output Voltage 22 V 

Output Current 8,83 A 

Maximum Power 150 W 

 

Table 2 shows the specifications of the weather station 

used to monitor environmental parameters. This data is 

essential to ensure that environmental parameters can be 

stored as data on solar panel influence parameters. 

 
Table 2 

Weather station specifications 

 

Item Technical Specification 

 Range   

Wind speed(Default) 0-40m/s   

Wind direction(Default) 0-359°   

Atmospheric temperature 0－100%   

Atmospheric pressure 150 － 1100hPa   

Rainfall 0-200mm/hr   

Altitude -500m – 9000m   

Radiation 0-2000W/m2   

Illumination 0-200000lux   

UV 0-2000W/m2   

PM2.5 0-2000 ug/m3   

PM10 0-2000 ug/m3   

Visibility 10-5000m   

Power Supply 12-24VDC 

Power consumption 1.7W 

Output Signal 
RS232/RS485(Modbus or 

NMEA-183), SDI-12 

Operating Temperature -20℃-+60℃ 

 

Table 3 contains a list of supporting devices used in this 

study: voltage and current sensors. This equipment monitors 

the electrical output parameters of the panel in an integrated 

manner, so that the data obtained has a high level of accuracy 

and reliability. 

 
Table 3 
Specification of PZEM-017 

 

PZEM-017 DC Communication Module 

Measuring Range 50A 

Voltage Measuring Range 0.05-300V 

Voltage Resolution 0.01V 

Voltage Measurement Accuracy 1% 

Current Measuring Range 0.02-50A 

Current Resolution 0.01A 

Current Measurement Accuracy 1% 

Power Measuring Range 0.2-90kW 

Power Resolution 0.1W 

Power Measurement Accuracy 1% 

Communication Interface RS485 Interface 

3.2. Pre-Processing of Data 

The pre-processing stage includes: 
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3.2.1. Data Cleansing 

Eliminate extremes, missing values, and outliers using 

linear interpolation and moving average smoothing 

techniques. 

3.2.2. Normalization 

All input variables are normalized into the range [0,1] by 

the Min-Max Scaling method to improve the training 

stability of the LSTM model. 

3.2.3. Time Series Transformation 

Data is organized into a sequence (time window) with a 

specific window length (e.g., 30 historical minutes) as input 

to predict future power output. 

 

3.3. Model Development 

The developed models include: 

3.3.1. Pure LSTM 

An LSTM network with multiple hidden layers and 

memory units to study the temporal relationship of input-

output data. 

3.3.2. CNN-LSTM 

A combination of CNN for extracting spatial features 

from climate data and LSTM for time series modeling. 

3.3.3. LSTM-Autoencoder (LSTM-AE) 

Used to reduce data dimensions and capture complex 

nonlinear patterns. 

3.3.4. Metaheuristic Optimization 

Algorithms such as the Grey Wolf Optimizer (GWO) or 

Genetic Algorithm (GA) adjust the LSTM hyperparameters 

to avoid overfitting. 

All models are built using the TensorFlow/Keras-based 

Python framework, with training on the GPU to speed up 

computing. 

3.4. Performance  

Model performance is evaluated using three key metrics: 

3.4.1. Cross-Validation 

Data is divided into subsets of training and testing on a 

rotating basis to avoid model bias. 

3.4.2. Test on Different Weather Conditions 

The model is tested on sunny, cloudy, and rainy weather 

data to measure the robustness of the model in the face of 

climate variability. 

4. Results and Discussion 

The measurement and analysis results of the relationship 

between various environmental parameters and the electrical 

power generated by polycrystalline solar panels. All data is 

obtained from direct field observations and recorded 

automatically through a SCADA system integrated with 

environmental sensors. The analysis was conducted to 

understand how air humidity, solar radiation intensity, panel 

temperature, and air temperature affect photovoltaic 

modules' electrical energy conversion performance. 

The measurement results show that changes in 

atmospheric conditions have a noticeable influence on the 

output power of solar panels. Each environmental variable 

exhibits different characteristics that determine the 

efficiency of a photovoltaic system. Therefore, this section 

not only displays the results of observations in the form of a 

graph but also outlines the physical relationships between 

parameters to provide a more comprehensive understanding 

of the behavior of PV systems under the influence of tropical 

climates. 

Fig. 3 shows the dynamic relationship between air 

humidity and the electrical power generated by solar panels 

over the observation period. When the humidity level 

increases, especially after 10.20 WIB until the afternoon, the 

output power of the panels tends to decrease. This pattern 

suggests that high air humidity has the potential to inhibit the 

process of absorbing solar radiation due to the increased 

density of water vapor in the atmosphere. As a result, the 

intensity of light received by the panel surface is reduced, 

which decreases energy conversion efficiency. Physically, 

this phenomenon can be explained by increased light 

scattering and decreased optical transmittance of air, which 

reduces the power generated by PV modules. 

 

 

Fig. 3. The relationship between air humidity and power 

Fig. 4 shows a positive correlation between solar 

radiation's intensity and solar panels' electrical power output. 

During the observation period with constant load, an 

increase in the value of solar radiation is followed by an 

increase power produced. This power illustrates the 

fundamental characteristics of photovoltaic modules, where 

the electrical energy generated depends directly on the 

amount of radiation energy received by the solar cell's 

surface. When the radiation peaks around noon, the panel's 

output power also shows the maximum value. This 

phenomenon confirms that the magnitude of the output 

power of PV panels is not only influenced by electrical 

parameters, but also highly determined by the intensity of 

solar radiation as the primary energy source of the 

photovoltaic system. 
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Fig. 4. The relationship between solar radiation and power 

Fig. 5 shows the trend between the panel temperature and 

the electrical power generated throughout the day. After 

10.20 WIB, the panel's surface temperature increases with 

the rise in power until it reaches the maximum value at 

midday. This panel is due to the increased intensity of solar 

radiation, which raises the temperature of the solar cell and 

amplifies the module's output current. However, at 

temperatures that are too high, conversion efficiency can be 

reduced due to the increased internal resistance of the PV 

cell. Therefore, although the relationship between 

temperature and power appears positive in each range, there 

is a threshold limit where an increase in temperature 

decreases the system's performance. These results 

demonstrate the need for a balance between optimal 

radiation and thermal control to maintain the performance of 

solar panels. 

 

 

Fig. 5. The relationship between panel temperature and power 

Fig. 6 shows the relationship between the ambient air 

temperature and the electrical power generated by solar 

panels. In constant load conditions around 10.20 WIB, the 

increase in air temperature tends to be followed by a rise in 

the power produced. In contrast, the decrease in air 

temperature is directly proportional to the reduction in 

power. This phenomenon shows that air temperature 

indirectly affects electrical power through its influence on 

the temperature of the panel cells. Warmer air generally 

signifies higher radiation intensity, which leads to an 

increase in the output current. However, excessively high air 

temperatures can cause overheating and degrade the 

module's efficiency in extreme conditions. Thus, air 

temperature is an essential indicator in predicting PV power 

fluctuations and is one of the main parameters in modeling 

photovoltaic systems based on environmental data. 

 

 

Fig. 6. The relationship between air temperature and power 

The results in Fig. 7 show the dynamics of environmental 

parameters that directly affect the performance of 

polycrystalline solar panels. It was observed that throughout 

the observation period, variations in air humidity, ambient 

temperature, irradiation, and wind speed showed fluctuating 

patterns that were closely related to daily climatic 

conditions. For example, an increase in the intensity of solar 

radiation during the day is followed by a rise in ambient 

temperature and panel temperature. Humidity tends to be 

higher in the morning and evening, while wind speeds show 

erratic patterns. This variation is the main challenge in 

predicting electrical power, as each parameter contributes 

differently to energy conversion efficiency. Visualization is 

an essential basis for understanding the operational context 

of PV panels under real conditions, while confirming that 

electrical power estimation cannot be separated from the 

dynamic influence of environmental factors. 

 

 

Fig. 7. Environmental parameter measurement results. 

Meanwhile, Fig. 8 shows the results of measurements of 

solar panel electrical power output taken for a whole month, 

from March 13 to April 13, 2023, at five-minute intervals 

every day. The pattern that appears to illustrate the typical 

characteristics of solar energy production is an increase in 

power from the morning, reaching its peak in the middle of 

the day, then declining again by the afternoon. However, 



JAICT, Journal of Applied Information and Communication Technologies                                Vol.11, No.2, 2025                                                                                                                                        

———————————————————————————————————– 

20 

 

there is significant variation between days, especially when 

the weather is cloudy or rainy, which causes inconsistent 

power peaks. This weather shows how closely the weather 

factor relates to the power produced. By observing Figure 2, 

solar energy output is intermittent and difficult to predict 

without the support of mathematical or algorithmic models. 

Therefore, the data in this image is the foundation for 

training and testing LSTM-based prediction models to 

produce more accurate and reliable estimates. 

 

 

Fig. 8. Results of measurement of electrical parameters. 

The study's results, the LSTM model, and the hybrid 

variants developed have been tested using actual 

environmental data consisting of irradiation parameters, 

temperature, humidity, and wind speed. The training process 

was carried out with a 70% training data ratio, 15% 

validation, and 15% test. 

 

 

 

Fig. 9. LSTM comparison results 

Fig. 9 compares the power of polycrystalline solar panels 

and the predicted results of three LSTM-based artificial 

intelligence models: pure LSTM, CNN-LSTM, and GWO-

LSTM. The horizontal axis represents the observation time 

in units of hours, while the vertical axis represents the 

electrical output of the solar panel in kilowatts (kW). The 

actual power pattern describes fluctuations in solar energy 

production throughout the day, with the lowest values in the 

morning and evening, as well as the peak of production 

around midday when the intensity of solar radiation is at its 

highest. 

All three prediction models can follow the actual power 

trend quite well. However, there is a difference in the degree 

of proximity of the prediction results to the actual data. The 

pure LSTM model shows predictive fluctuations that tend to 

be more deviant, especially in the transition period from 

morning to noon and as the afternoon approaches. LSTM 

indicates that although LSTMs can capture temporal 

patterns, these models are still limited in accommodating 

complex weather variability. 

The CNN-LSTM model shows better performance than 

pure LSTM. CNN integration allows the model to extract 

more in-depth features from environmental data, making the 

resulting predictions smoother and closer to actual power 

patterns. Even so, there is still a slight deviation in the 

conditions of sudden changes in radiation intensity. 

Meanwhile, the GWO-LSTM model produces 

predictions closest to the actual data. The curve of the 

prediction results is almost parallel to the actual power, with 

a minimal deviation all the time. This curve shows that 

hyperparameter optimization through the Grey Wolf 

Optimizer (GWO) can improve the ability of LSTMs to 

adjust network weights and reduce prediction errors. In other 

words, the GWO-LSTM proved to be the most robust model 

in dealing with daily climate dynamics and producing more 

reliable electrical power estimates. 

In addition to the visualization of curve comparisons, the 

performance of the three models was also analyzed using 

statistical evaluation metrics, namely R-squared (R²), Root 

Mean Square Error (RMSE), and Mean Absolute Percentage 

Error (MAPE). These three metrics were chosen because 

they are widely used in solar energy prediction studies to 

assess the model's accuracy, precision, and stability, as seen 

in Table 4. 

 
Table 4 

Comparison of performance models 

 
Model R² RMSE (kW) MAPE (%) 

Pure LSTM 0.95 0.42 6.2 

CNN-LSTM 0.97 0.36 5.1 

LSTM-AE 0.96 0.39 5.5 

GWO-LSTM Optimization 0.98 0.31 4.3 

 

The test results showed that pure LSTM produced an R² 

value of 0.95, meaning the model can explain about 95% of 

the actual data variation. However, the RMSE value of 0.42 

kW and a MAPE of 6.2% indicate that this model still 

produces significant prediction errors, especially in rapidly 

changing weather conditions. 

The CNN-LSTM model significantly improves, with the 

R² increasing to 0.97, the RMSE value dropping to 0.36 kW, 

and the MAPE decreasing to 5.1%. These results indicate 

that adding the CNN layer helps the model capture nonlinear 

and spatial patterns in environmental data, resulting in more 

accurate predictions. 

Meanwhile, the GWO-LSTM model proved to be the 

most superior, with an R² value of 0.98, an RMSE of only 

0.31 kW, and a MAPE as low as 4.3%. The very high R² 

value confirms that the model can explain almost all the 

variations in actual power. At the same time, the low RMSE 

and MAPE indicate that the resulting predictions are 
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accurate and consistent across a wide range of weather 

conditions. 

Thus, the GWO-LSTM model statistically provides the 

best predictive performance compared to pure LSTM and 

CNN-LSTM. It confirms that hyperparameter optimization 

through the Grey Wolf Optimizer metaheuristic algorithm 

makes a real contribution to improving the accuracy and 

reliability of the predictive power of polycrystalline solar 

panels. 

5. Conclusion 

This study has developed and evaluated a model of 

electrical power prediction of polycrystalline solar panels 

based on the Long Short-Term Memory (LSTM) algorithm 

and its variants. The results showed that all LSTM models 

could follow the temporal pattern of actual power with a high 

level of accuracy, but there were significant performance 

differences between variants. 

The pure LSTM model produces reasonably accurate 

predictions (R² = 0.95) but still faces difficulties in extreme 

weather conditions with relatively greater errors. The CNN-

LSTM model shows an improvement in performance with 

the ability to extract spatial features from environmental 

data, so that the R² value increases to 0.97 and the MAPE 

decreases to 5.1%. Meanwhile, the GWO-LSTM model 

showed the best results, with R² reaching 0.98, RMSE only 

0.31 kW, and MAPE 4.3%. It proves that integrating the 

Grey Wolf Optimizer metaheuristic algorithm can improve 

the reliability of the LSTM through hyperparameter 

optimization, resulting in more accurate and stable 

predictions in various weather conditions. 

The study confirms that the use of optimization-based 

LSTM models is not only relevant for improving the 

predictability of polycrystalline PV electrical power but also 

has the potential to be applied in intelligent energy 

management systems to improve the efficiency of renewable 

energy-based power grids. 
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