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Abstract— This study investigates the effects of 

CaO/K₂O catalyst mass (X₁) and reaction time (X₂) on 

biodiesel yield produced from waste cooking oil via 

transesterification. A 2² factorial design was employed 

to evaluate the main and interaction effects of both 

parameters. Analysis of variance (ANOVA) 

confirmed that the developed regression model was 

statistically significant (p = 0.0253) with a high 

coefficient of determination (R² = 0.9386), indicating 

excellent model adequacy. The reaction time (X₂) 

exhibited the most significant positive effect on 

biodiesel yield (t = 5.96), while the catalyst mass (X₁) 

showed a negligible influence. The interaction term 

(X₁X₂) presented a moderate negative effect, 

suggesting that excessive catalyst loading combined 

with longer reaction duration may slightly decrease 

yield due to soap formation and emulsification. The 

contour profiler revealed that yield increases with 

both factors up to an optimum point, after which 

further catalyst addition provides minimal 

improvement. The optimum conditions were achieved 

at a catalyst mass of 4.5 g and a reaction time of 4.5 

h, resulting in a biodiesel yield of 70.3%. These 

findings confirm that reaction time is the dominant 

factor affecting transesterification efficiency, and that 

CaO/K₂O derived from waste eggshells serves as an 

effective and sustainable heterogeneous catalyst. 
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I. INTRODUCTION 

The accelerating global energy transition has 

fundamentally reshaped the dynamics of fuel 

production and consumption. Growing concerns 

over the depletion of fossil fuel reserves, climate 

change, and environmental degradation have 

intensified global efforts to develop renewable 

and sustainable energy sources. Among various 

renewable energy alternatives, biodiesel—

particularly derived from lipid-based feedstocks 

such as waste cooking oil—has emerged as a 

highly promising substitute for conventional 

diesel. This is due to its biodegradability, carbon 

neutrality, compatibility with existing diesel 

engines, and its potential to reduce greenhouse 

gas emissions [1]–[3]. In line with the 

implementation of sustainable energy policies and 

net-zero emission targets across many countries, 

biodiesel is increasingly recognized as a key 

component within the global clean energy 

portfolio [4], [2]. 

The search for alternative feedstocks for biodiesel 

production highlights the vast potential of waste 

cooking oil. Globally, vegetable oil consumption 

reaches hundreds of millions of tons annually, with 

a large portion eventually becoming waste [5]. 

Improper disposal of used oil—such as 

discharging it into wastewater systems or 

landfills—causes serious environmental pollution, 

while repeated use in frying poses health risks [6]. 

Utilizing waste cooking oil as a biodiesel feedstock 

not only mitigates environmental pollution but also 

embodies the principles of a circular economy by 

converting problematic waste into a valuable 

renewable energy source [7]. In Indonesia, one of 

the world’s largest consumers of cooking oil, the 

potential of waste cooking oil as a biodiesel 

feedstock is particularly significant, offering a dual 

solution to domestic waste and energy challenges 

[8]. 

The efficiency of biodiesel production is 

strongly influenced by the choice of catalyst and 

reaction conditions. While homogeneous base 

catalysts are effective in accelerating 

transesterification reactions, they suffer from 

drawbacks such as soap formation, equipment 

corrosion, and difficulties in product separation 

[1]. Conversely, heterogeneous catalysts such as 

calcium oxide (CaO) derived from eggshell waste 

offer advantages including easy separation, 

reusability, and lower environmental impact [9]. 

However, pure CaO catalysts are prone to 

deactivation due to exposure to moisture and 

carbon dioxide. Therefore, modification of CaO 

with alkali metals such as potassium oxide (K₂O) 
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has been shown to enhance both catalytic activity 

and stability [9], [10]. To maximize conversion 

efficiency and biodiesel yield, optimization of 

process parameters is essential. Statistical 

experimental design methods, such as factorial 

design, enable simultaneous evaluation of the main 

and interaction effects among multiple factors, 

allowing identification of the most influential 

operational conditions. Unlike conventional one-

factor-at-a-time approaches, factorial design 

significantly reduces the number of experiments 

required while providing deeper insight into 

process interdependencies [11], [12]. 

This study introduces a dual waste 

valorization approach by employing waste cooking 

oil as the biodiesel feedstock and eggshell waste as 

the precursor for K₂O-modified CaO catalysts. The 

resulting CaO/K₂O heterogeneous catalyst 

represents an environmentally friendly and cost-

effective material for renewable energy 

conversion. A 2² factorial design was employed to 

evaluate the influence of CaO loading (X₁) and 

K₂O loading (X₂) on biodiesel yield. Through 

analysis of variance (ANOVA) and model 

significance testing, this work aims to identify the 

dominant factors and interaction effects governing 

biodiesel production and to determine the optimal 

combination of operating conditions for efficient 

and sustainable conversion. 

II. MATERIALS AND METHODS 

Materials 

Waste cooking oil (WCO) was collected 

from local food vendors in Samarinda, Indonesia, 

and used as the primary feedstock. Eggshell waste 

from chicken eggs was employed as the calcium 

oxide (CaO) source, while potassium hydroxide 

(KOH, 11% v/v) was used as the impregnating 

agent to synthesize the CaO/K₂O catalyst. Other 

chemicals included technical-grade methanol 

(99%), ethanol (95%), KOH solution (0.1 N), and 

distilled water of analytical purity. All reagents 

were used as received without further purification. 

Preparation and Modification of Catalyst 

Eggshells were thoroughly washed with 

running water to remove organic residues and 

oven-dried at 110 °C for 4 h. The dried material 

was ground and sieved to obtain a fine powder 

(100 mesh). The powder was then calcined at 900 

°C for 3 h to obtain active CaO. Catalyst 

modification was carried out by impregnating the 

CaO with 11% (v/v) KOH solution under stirring 

at 85 °C for 3 h. The impregnated solid was 

subsequently dried at 110 °C for 12 h and 

recalcined at 300 °C for 3 h to produce the active 

CaO/K₂O catalyst. The resulting catalyst was 

stored in an airtight container to prevent moisture 

and CO₂ absorption from the atmosphere. 

Transesterification Process 

Biodiesel production was conducted via 

transesterification of waste cooking oil with 

methanol using the prepared CaO/K₂O catalyst. 

The reaction was performed at 65 °C with a 

methanol-to-oil molar ratio of 12:1 under 

continuous stirring. Upon completion, the reaction 

mixture was allowed to settle in a separating funnel 

for 12 h to facilitate glycerol separation. The upper 

biodiesel layer was washed with warm water until 

neutral pH and then dried at 105 °C under vacuum 

to remove residual methanol and moisture. 

Biodiesel yield was calculated as the ratio of the 

mass of purified biodiesel to the initial mass of 

waste cooking oil used. 

Experimental Design (2² Factorial Design) 

A 2² factorial design was applied to evaluate the 

influence of two independent variables on 

biodiesel yield, namely: 

X₁: Catalyst mass (1.5 g and 4.5 g) 

X₂: Reaction time (1.5 h and 4.5 h) 

The combination of both factors resulted in 

four main experimental runs and two center points 

to ensure data reproducibility and stability. The 

response variable was biodiesel yield (%). 

Statistical analysis was performed using SAS JMP 

software version 16, including analysis of variance 

(ANOVA), determination of R², p-values, main 

and interaction effects, and a lack-of-fit test to 

assess model adequacy. The results were 

illustrated through main effect and interaction 

plots to describe the relationship between the 

process variables and biodiesel yield. 

III. RESULTS AND DISCUSSION 

Effect of Catalyst Mass and Reaction Time on 

Biodiesel Yield 

A 2² factorial design was employed to 

investigate the effect of two main process variables 

on the biodiesel yield obtained from waste cooking 

oil using CaO/K₂O as a heterogeneous catalyst. 

The response variable was biodiesel yield (%). The 

aim was to identify the dominant factor, the 

interaction between variables, and the optimum 

conditions leading to the highest conversion 

efficiency. Table 1 presents the experimental 

matrix along with the actual and predicted yields. 
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The experimental yield ranged from 63.6% to 

71.2%, whereas the model predicted values from 

63.2% to 70.8%. The small deviation (<1%) 

between actual and predicted responses 

demonstrates a good fitting performance of the 

regression model. 

Table 1. experimental matrix along with the actual 

and predicted yields 

No X₁ (code) Catalyst (g) X₂ (code) Time (h) Yield (%) Predicted Yield (%) 

1 −1 1.5 −1 1.5 63.6 63.2 

2 −1 1.5 +1 4.5 71.2 70.8 

3 +1 4.5 −1 1.5 64.8 64.4 

4 +1 4.5 +1 4.5 69.1 68.7 

5 0 3.0 0 3.0 66.1 66.8 

6 0 3.0 0 3.0 65.5 66.8 

7 0 3.0 0 3.0 67.3 66.8 

 

The model summary (Table 2) shows a high 

coefficient of determination (R² = 0.9276) and 

adjusted R² = 0.8551, indicating that 

approximately 92.76% of the yield variation can be 

explained by the model. The relatively low RMSE 

(0.9987) compared to the mean yield (66.8%) 

confirms that the prediction error is minimal, 

suggesting strong reproducibility among 

replicates.  

 

Tabel 2. Summary of fit  

RSquare  0.9276 

RSquare Adj 0.8551 

Root Mean Square Error 0.9987 

Mean of Response 66.8 

Observations (or Sum Wgts) 7 

An increase in reaction time exerted a more 

pronounced influence on biodiesel yield than an 

increase in catalyst mass. For instance, at low 

catalyst loading (1.5 g), extending the reaction 

time from 1.5 h to 4.5 h enhanced the yield from 

63.6% to 71.2%, suggesting that longer contact 

time allows the transesterification reaction to 

approach equilibrium. Conversely, at constant 

reaction time (1.5 h), increasing the catalyst 

amount from 1.5 g to 4.5 g slightly improved the 

yield (from 63.6% to 64.8%), implying that 

catalytic activity was not fully utilized under short 

reaction durations. 

 

Figure 1. Plot of actual vs predicted biodiesel 

yield. 

At prolonged reaction time (4.5 h), further 

increase in catalyst mass even reduced the yield 

(from 71.2% to 69.1%). This phenomenon is 

consistent with prior studies, where excessive 

catalyst loading can promote soap (saponification) 

formation and increase reaction viscosity, 

hindering phase separation between methyl ester 

and glycerol [13,14]. The optimum yield (71.2%) 

was achieved at 1.5 g catalyst and 4.5 h reaction 

time, closely matching the model prediction 

(70.8%), confirming the high predictive reliability 

of the model. The positive interaction between 

both variables was only significant at higher 

reaction times, highlighting that the reaction time 

is the most influential factor governing triglyceride 

conversion. 

Statistical Analysis of the Regression Model 

The analysis of variance (ANOVA) 

confirmed that the regression model was 

statistically significant at a 95% confidence level 

(Prob > F = 0.0324), as shown in Table 3. The F-

ratio (12.81) indicates that the variation explained 

by the model is considerably larger than the 

random experimental error. 
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Table 3. Analysis of variance (ANOVA) 

 

The regression model derived from the 

experimental data is expressed as: 

Y = 66.8 – 0.225X1 + 2975X2 – 0.825X1X2 

The intercept (66.8) corresponds to the 

average yield at central conditions (3.0 g catalyst, 

3.0 h reaction time). The catalyst mass (X₁) shows 

a negative but statistically insignificant effect (p = 

0.6829 > 0.05), implying that variations within the 

tested range did not significantly alter the yield. 

This may be due to the system operating near the 

catalyst saturation limit, where increasing catalyst 

mass no longer enhances the number of effective 

active sites [15]. In contrast, reaction time (X₂) 

exhibited a significant positive effect (p = 0.0095 

< 0.05, coefficient = +2.975), confirming that 

longer reaction times facilitate a more complete 

transesterification process [16]. The interaction 

term (X₁X₂) was negative and not statistically 

significant (p = 0.1971), suggesting that excessive 

catalyst under prolonged reaction times may 

slightly inhibit yield due to increased viscosity and 

soap formation [17]. 

Model Validation and Lack-of-Fit Test 

The lack-of-fit test (Table 4) was conducted 

to verify the adequacy of the linear model. The 

obtained F-ratio (1.56) with Prob > F = 0.3377 (> 

0.05) indicates no significant lack of fit, meaning 

the model adequately represents the experimental 

data. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Lack of fit test 

Source DF 
Sum of 

Squares 

Mean 

Square 

F-

Ratio 

Prob > 

F 

Lack of 

Fit 
1 1.3125 1.3125 1.5625 0.3377 

Pure 

Error 
2 1.6800 0.8400   

Total 

Error 
3 2.9925    

Max R²     0.9593 

The low lack-of-fit sum of squares (1.3125) 

relative to the pure error (1.68) confirms that most 

residual variation arises from experimental error 

rather than model inadequacy. The maximum 

achievable R² (0.9593) further indicates that 

extending the model (e.g., adding quadratic terms) 

would only marginally improve predictive power 

(~3%), hence unnecessary for this system. 

Collectively, these findings validate that the 

developed two-factor linear regression model 

reliably represents the system, balancing 

simplicity and accuracy. The model’s high R² 

(0.9276), adjusted R² (0.8552), and low RMSE 

(0.9987) demonstrate strong predictive capability 

and experimental reproducibility. 

Normal Probability Plot of Effects 

The normal probability plot of standardized 

effects was used to visually identify which factors 

significantly affect biodiesel yield. In this plot, the 

t-ratios of each factor and their interaction are 

plotted against the expected normal quantiles. 

Factors that lie along the red reference line are 

considered statistically insignificant, whereas 

those that deviate substantially from the line 

indicate a significant effect on the response. 

Source DF Sum of Squares Mean Square F Ratio 

Model 3 38.327500 12.7758 12.8079 

Error 3 2.992500 0.9975 Prob > F 

C. Total 6 41.320000  0.0324 
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Figure 2. Normal probability plot of standardized 

effects (t-ratio) for the biodiesel yield model 

In Figure 2, factor X₂ (reaction time) is 

clearly positioned farthest from the reference line 

in the positive region, confirming its dominant and 

statistically significant positive influence on 

biodiesel yield. This observation aligns with the 

ANOVA results (p = 0.0095 < 0.05), where 

reaction time was identified as the only significant 

factor contributing to the model. The positive 

direction of X₂ indicates that longer reaction 

durations enhance the transesterification process, 

resulting in higher biodiesel yield. Conversely, the 

interaction term (X₁·X₂) appears slightly below the 

reference line, suggesting a negative but 

statistically insignificant effect. This supports the 

regression analysis result where the interaction 

term had p = 0.1971 (>0.05). The negative trend 

implies that, at longer reaction times, increasing 

catalyst mass does not proportionally improve 

yield, potentially due to increased reaction mixture 

viscosity and saponification phenomena. The main 

effect of catalyst mass (X₁) is located near the 

reference line and thus considered insignificant 

within the studied range, consistent with its high p-

value (0.6829). This suggests that catalyst loading 

in the range of 1.5–4.5 g already approaches the 

effective saturation level, beyond which additional 

catalyst contributes minimally to yield 

improvement. Overall, the normal probability plot 

validates the statistical findings that reaction time 

(X₂) is the only factor exerting a significant 

positive effect on biodiesel conversion, while the 

effects of catalyst mass (X₁) and the interaction 

term (X₁·X₂) remain insignificant within the 

studied experimental domain. 

 

Studentized Residual Analysis 

The studentized residual plot was used to 

evaluate the adequacy of the regression model and 

to detect potential outliers in the experimental data. 

The studentized residuals represent standardized 

deviations between the experimental and predicted 

yields, allowing for direct comparison across data 

points.  

 

Figure 3. Studentized residual plot showing 

random distribution within the ±3 confidence 

limits 

In Figure 3, all data points lie well within the 

±3 control limits (green lines) and are 

symmetrically distributed around the zero line 

(blue), indicating that no significant outliers are 

present in the dataset. Furthermore, none of the 

residuals approach the outer ±10 boundary (red 

lines), confirming that the model’s prediction 

errors are random and not systematically biased. 

This pattern suggests that the assumptions of 

normality, homoscedasticity, and independence of 

errors are satisfactorily met. In other words, the 

model captures the main experimental trends 

without overfitting or systematic deviation from 

the observed data. The residual distribution also 

confirms that the linear model adequately 

describes the relationship between catalyst mass 

(X₁), reaction time (X₂), and biodiesel yield within 

the studied range. Combined with the results of the 

lack-of-fit test (Prob > F = 0.3377), this further 

validates that the developed model is statistically 

sound and experimentally consistent. 

Interaction Profiler Analysis 

 

The interaction profiler plot illustrates the 

combined effects of catalyst mass (X₁) and reaction 

time (X₂) on biodiesel yield. Each line represents 

the variation in predicted yield at different levels 

of one factor while holding the other factor 

constant. The slope and intersection of these lines 

indicate the magnitude and nature of the 

interaction between factors. 
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Figure 4. Interaction profiler showing the main 

and interaction effects of catalyst mass (X₁) and 

reaction time (X₂) on biodiesel yield. 

 

As shown in Figure 4, the reaction time (X₂) 

exhibits a strong positive slope, confirming its 

dominant influence on yield improvement. An 

increase in reaction time from the low level (−1; 

1.5 h) to the high level (+1; 4.5 h) significantly 

enhances biodiesel yield, regardless of catalyst 

mass. In contrast, the catalyst mass (X₁) shows 

only a minor effect, as the yield variation across its 

range is relatively small.  The intersection of the 

lines in the X₁–X₂ interaction panel suggests a mild 

negative interaction between the two factors. This 

implies that at longer reaction times, increasing 

catalyst loading does not proportionally enhance 

yield and may even slightly decrease it. Such 

behavior is consistent with the experimental 

observations and ANOVA results, where the X₁·X₂ 

interaction term had a negative coefficient 

(−0.825) and was statistically insignificant (p = 

0.1971). The negative interaction trend may arise 

from increased viscosity and soap formation at 

higher catalyst concentrations, which hinder the 

mass transfer between methanol and oil phases and 

reduce overall conversion efficiency [17]. Overall, 

the interaction profiler confirms that reaction time 

(X₂) is the most influential factor, whereas catalyst 

mass (X₁) and their interaction (X₁·X₂) contribute 

only marginally to yield variation. The parallelism 

of the lines in the X₂ panel further reinforces that 

the reaction time effect is consistently positive 

across all catalyst levels, validating the robustness 

of this parameter in determining process 

efficiency. 

 

Contour Profiler Analysis 

 

The contour profiler provides a two-

dimensional representation of the response surface 

between catalyst mass (X₁) and reaction time (X₂) 

in relation to biodiesel yield (Y). The plot reveals 

a positive correlation between both factors, where 

the response surface slopes upward from the 

lower-left to the upper-right region, indicating that 

higher levels of catalyst mass and reaction time 

generally improve biodiesel yield. 

 
 

Figure 5. Contour profiler showing the combined 

effects of catalyst mass (X₁) and reaction time 

(X₂) on biodiesel yield 

 

However, the curvature of the contour 

suggests a nonlinear relationship, particularly with 

respect to X₁ (catalyst mass). At higher catalyst 

concentrations (X₁ > 0.5), the response surface 

begins to plateau, implying that the increase in 

yield becomes less significant beyond the optimal 

catalyst level. This behavior reflects the mass 

transfer limitation and potential soap formation 

that occur when excessive catalyst is introduced, 

which can lead to partial glyceride stabilization 

and lower separation efficiency during 

transesterification [18]. 

The reaction time (X₂) shows a consistently 

positive effect, as yield increases smoothly along 

the X₂ axis. The contour gradient remains gentle, 

confirming that extending the reaction time 

promotes higher conversion until equilibrium is 

approached. This finding aligns with both the main 

effects and interaction analyses (Figures 3 and 4), 

highlighting X₂ as the dominant factor influencing 

the overall biodiesel production efficiency. Thus, 

the contour profiler supports the model prediction 

that the optimal yield region lies within the upper 

mid-range of catalyst mass (X₁ ≈ 0.4–0.6) and 

longer reaction time (X₂ > 0.5), where maximum 

conversion can be achieved without inducing side 

reactions or phase instability. 

 
Figure 6. Pareto chart of t-ratios showing the 

relative significance of X₁, X₂, and their 

interaction on biodiesel yield 
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The Pareto chart illustrates the relative 

significance of each factor and interaction term 

based on their t-ratios. The factor X₂ (reaction 

time) exhibits the highest t-ratio value of 5.957, 

clearly surpassing the significance threshold, 

indicating that reaction time has the most 

substantial and statistically significant influence on 

biodiesel yield. This strong positive effect 

demonstrates that extending the reaction duration 

enhances the conversion of triglycerides into 

methyl esters, consistent with the kinetics of the 

transesterification process. In contrast, X₁ (catalyst 

concentration) displays a relatively small t-ratio (–

0.451), suggesting a negligible direct effect on 

yield within the studied range. However, the 

interaction term (X₁X₂) presents a moderate 

negative t-ratio (–1.652), implying a potential 

antagonistic effect between catalyst amount and 

reaction time. This interaction indicates that 

excessive catalyst concentration, when coupled 

with prolonged reaction times, may slightly reduce 

yield due to the formation of soap and 

emulsification phenomena, which interfere with 

product separation efficiency. Overall, the Pareto 

chart confirms that reaction time (X₂) is the 

dominant factor controlling biodiesel production 

efficiency, while the combined effect of catalyst 

mass and reaction duration should be carefully 

optimized to prevent secondary side reactions. 

This result aligns with the findings from the 

Normal Probability Plot and Interaction Profiler, 

reinforcing the robustness of the statistical model 

and the reliability of the experimental data. 

Surface Plot Analysis 

Figure 7 presents the response surface plot 

depicting the combined influence of catalyst mass 

(X₁) and reaction time (X₂) on biodiesel yield. The 

surface exhibits an upward slope from the lower-

right region (high X₁, low X₂) toward the upper-

left region (low X₁, high X₂), indicating that 

prolonging the reaction time consistently enhances 

the biodiesel yield, while the effect of catalyst 

mass remains comparatively minor. The color 

gradient from blue (low yield) to yellow–red (high 

yield) reinforces this trend, showing a pronounced 

increase in yield with reaction time extension, 

followed by a slight decline at higher catalyst 

loadings. The nearly flat curvature along the X₁ 

axis suggests that variations in catalyst mass 

between 1.5–4.5 g do not significantly affect the 

yield, implying that the system operates near the 

catalyst saturation point. In summary, the surface 

plot supports the statistical findings that reaction 

time (X₂) is the most influential factor controlling 

biodiesel yield, whereas catalyst mass (X₁) exerts 

only a marginal and occasionally negative effect 

when used excessively, due to increased viscosity 

and soap formation. Therefore, the combination of 

1.5 g catalyst and 4.5 h reaction time is identified 

as the optimal operating condition, producing the 

highest predicted yield of approximately 71%. 

 
Figure 7. Response surface plot showing the 

interaction between catalyst mass (X₁) and 

reaction time (X₂) on biodiesel yield. 

 

CONCLUSION 

A 2² factorial design was applied to study the 

effects of catalyst mass and reaction time on 

biodiesel yield from waste cooking oil using 

CaO/K₂O. The regression model showed strong 

agreement between experimental and predicted 

values (R² = 0.9276, RMSE = 0.9987), confirming 

its reliability. Reaction time was the most 

significant factor (p < 0.05), while catalyst mass 

and their interaction had negligible effects. The 

highest yield of 71.2% was obtained at 1.5 g 

catalyst and 4.5 h reaction time. Overall, longer 

reaction durations enhance conversion efficiency, 

whereas excessive catalyst loading may slightly 

reduce yield due to soap formation and viscosity 

effects. 
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