SISTEM MONITORING DAN PERINGATAN DINI ANGIN KENCANG BERBASIS INTERNET OF THINGS DAN MEDIA SOSIAL
Abstract
yang bisa diakses oleh masyarakat baik di lokasi maupun melalui media sosial. Ketiadaan
sistem tersebut menyebabkan masyarakat tidak bisa mengantisipasi bencana tersebut dan
menimbulkan korban baik jiwa maupun materi. Penelitian ini bertujuan untuk membangun
sistem monitoring dan peringatan dini angin kencang dengan teknologi Internet of Thing
(IoT)-media sosial yang mendukung penerapan revolusi industri 4.0. Metode penelitian
meliputi investigasi kecepatan angin berbahaya, desain sistem, pengembangan hardware,
pengembangan software, pengujian di laboratorium, pengujian di lapangan, analisis serta
evaluasi hasil pengujian. Penelitian ini telah berhasil mengukur kecepatan angin aktual di
suatu lokasi, mengambil data kecepatan angin dari data prakiraan cuaca di internet, dan
memberikan peringatan dini angin kencang melalui layar running text dan media sosial.
Implementasi sistem ini akan membantu pemerintah mencegah jatuhnya korban akibat
angin kencang dengan peringatan dini.
Kata Kunci: Angin Kencang, IoT-Media Sosial, Monitoring, Peringatan Dini
Full Text:
PDFReferences
Allen, R. M. (2011) ‘The ElarmS Earthquake Early Warning Methodology and Application across California’, in Earthquake Early Warning Systems. Berlin: Springer, pp. 21–43.
Baum, R. L. and Godt, J. W. (2010) ‘Early warning of rainfall-induced shallow landslides and debris flows in the USA’, Landslide, 7(1), pp. 259–272. doi: 10.1007/s10346-009-0177-0.
Chatfield, A. T. and Brajawidagda, U. (2013) ‘Twitter Early Tsunami Warning System : A Case Study in Indonesia ’ s Natural Disaster Management’, in 46th Hawaii International Conference on System Sciences Twitter. Hawaii, pp. 2050–2060. doi: 10.1109/HICSS.2013.579.
Febrianto, H., Fariza, A. and Hasim, J. A. N. (2016) ‘Urban Flood Risk Mapping Using Allen, R. M. (2011) ‘The ElarmS Earthquake Early Warning Methodology and Application across California’, in Earthquake Early Warning Systems. Berlin: Springer, pp. 21–43.
Baum, R. L. and Godt, J. W. (2010) ‘Early warning of rainfall-induced shallow landslides and debris flows in the USA’, Landslide, 7(1), pp. 259–272. doi: 10.1007/s10346-009-0177-0.
Chatfield, A. T. and Brajawidagda, U. (2013) ‘Twitter Early Tsunami Warning System : A Case Study in Indonesia ’ s Natural Disaster Management’, in 46th Hawaii International Conference on System Sciences Twitter. Hawaii, pp. 2050–2060. doi: 10.1109/HICSS.2013.579.
Febrianto, H., Fariza, A. and Hasim, J. A. N. (2016) ‘Urban Flood Risk Mapping Using Analytic Hierarchy Process and Natural Break Classification’, in Knowledge Creation and Intelligent Computing (KCIC) Urban, pp. 148–154.
Jian, H. et al. (2015) ‘3D WebGIS-based platform for debris fl ow early warning : A case study’, Engineering Geology. Elsevier B.V., 197, pp. 57–66. doi: 10.1016/j.enggeo.2015.08.013.
Kanazawa, T. (2013) ‘Japan Trench earthquake and tsunami monitoring network of cable-linked 150 ocean bottom observatories and its impact to earth disaster science’, in IEEE International Underwater Technology Symposium, pp. 1–5.
Kebaili, M. O. et al. (2016) ‘Landsliding early warning prototype using MongoDB and Web of Things technologies’, Procedia Computer Science. The Author(s), 98, pp. 578–583. doi: 10.1016/j.procs.2016.09.090.
Mardiyono, M., Sari, R. E. and Dini, N. O. (2018) ‘Wind Speed Monitoring and Alert System using Sensor and Weather Forecast’, in 6th International Technical Conference. Semarang, pp. 1–6.
Mardiyono, M. and Suryanita, R. (2011) ‘Prediction of Building Condition after Earthquake Using Artificial Neural Network’, in Seminar Nasional Teknologi Informasi Komunikasi dan Industri. Pekanbaru, pp. 47–55.
Mousa, M., Zhang, X. and Claudel, C. (2016) ‘Flash Flood Detection in Urban Cities Using Ultrasonic and Infrared Sensors’, IEEE SENSORS JOURNAL, 16(19), pp. 7204–7216.
Nasir, H. M. et al. (2016) ‘Wind Speed Detection System : Framework and Implementation’, in 2016 International Conference on Information and Communication Technology (ICICTM. Kuala Lumpur, pp. 61–64.
Pinto, D. and Cipriano, A. (2014) ‘Tsunami early warning system architecture based on automation technologies’, in 1st International Conference on Information and Communication Technologies for Disaster Management, pp. 1–5.
Putra, R. et al. (2016) ‘DESAIN DAN IMPLEMENTASI PERINGATAN DINI BANJIR MENGGUNAKAN DATA MINING DENGAN WIRELESS SENSOR NETWORK’, J. Nas. Tek. Elektro, 5(2), pp. 181–191.
Rahadianto, H., Fariza, A. and Hasim, J. A. N. (2015) ‘Risk-Level Assessment System on Bengawan Solo River Basin Flood Prone Areas Using Analytic Hierarchy Process and Natural Breaks’, in International Conference on Data and Software Engineering, pp. 195–200.
Raudah, A., Ervianto, E. and Lysbetti, N. M. (2016) ‘Jom FTEKNIK’, 3, 3(1), pp. 1–11.
Schmidlin, T. W. (2009) ‘Human fatalities from wind-related tree failures in the United States, 1995–2007’, Nat. Hazard, 50, pp. 13–25. doi: 10.1007/s11069-008-9314-7.
Zollo, A. and Lancieri, M. (2007) ‘Real-time Estimation of Earthquake Magnitude for Seismic Early Warning’, in Earthquake Early Warning Systems. Berlin: Springer, pp. 45–63.
Refbacks
- There are currently no refbacks.